

CAPSIM® Text Mode

User's Guide

Version 6

Silicon DSP Corporation

http://www.silicondsp.com

Capsim® Text Mode Introduction 2

Capsim® Text Mode Introduction 3

Copyright (c) 1989-2007 Silicon DSP Corporation
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

Capsim® Text Mode Introduction 4

Table of Contents

Introduction ___ 6

References ___ 7
1.0 A CAPSIM Text Mode Tutorial __ 9

1.1 Introduction __ 9
1.2 Invoking CAPSIM ___ 9
1.3 Blocks, HBlocks, and the Universe ___ 10
1.4 The Standard Block Library __ 11
1.5 Parameters __ 12
1.6 Using Blocks ___ 12
1.7 Making Connections __ 14
1.8 Checking the Universe ___ 14
1.9 Running the Simulation __ 15
1.10 Changing the Parameters ___ 16
1.11 Saving the Universe __ 17
1.12 Creating an HBlock (Hierarchical Block) __________________________________ 18
1.13 Additional Hints ___ 22

2.0 CAPSIM Text Mode Reference __ 25
2.1 Introduction ___ 25
2.2 The CAPSIM Environment ___ 26
2.3 Running CAPSIM __ 27
2.4 Creating Blocks __ 28
2.5 Creating HBlocks (Hierarchical Blocks) ____________________________________ 29
2.6 Parameters __ 30
2.8 Connecting, Disconnecting and Naming Connections _________________________ 34
2.9 Running a Simulation ___ 37
2.10 The Current Block ___ 37
2.11 Moving About ___ 38
2.12 Display, Info, and Man ___ 39
2.13 Loading and Storing ___ 42
2.14 Removing Blocks __ 43
2.15 Deleting Blocks __ 44
2.16 Inserting Blocks ___ 46

Capsim® Text Mode Introduction 5

2.17 Replacing Blocks __ 47
2.18 Search Paths __ 48
2.19 Aliases ___ 48
2.10 The Shell Command __ 50
2.19 History ___ 50
2.20 Inform ___ 51

3.0 Capsim TCL Interpreter __ 55
3.1 Introduction __ 55
3.2 TCL Script ___ 55
3.2 Capsim TCL Command Summary ___ 61

4.0 CAPSIM COMMAND SUMMARY _____________________________________ 64
Appendix A ___ 76
Appendix B ___ 80

Capsim® Text Mode Introduction 6

Introduction

Capsim has been developed by XCAD Corporation. The predecessor and
original model of CAPSIM was BLOSIM. BLOSIM is a signal
processing simulation program, originally developed at the University of
California, Berkeley, 1985. The primary authors were D. G.
Messerschmitt and D. J. Hait. Since arrival at NCSU in November 1987,
the program has been extensively debugged and expanded. Capsim was
completely remodeled, enhanced with new commands, and improved by
XCAD Corporation as will be described shortly1. The person-hours spent
on this task have made Capsim a vast improvement over the original in
user convenience, capability and reliability (see appendix A for a
comparison between Capsim V5 and Blosim v.3). In the latest version,
V6, all blocks are written in XML and are transformed into C code using
XSLT. Furthermore, the TCL interpreter has been incorporated into
Capsim with full interaction with the block diagram topology, supporting
iterative simulations. Capsim simulations can set TCL variables that are
accessible to TCL scripts. TCL scripts can set and change block
parameters and topology arguments. These are major enhancements to
Capsim and increase its power and capabilities. They also allow
parameters to be expressed in terms of mathematical expressions without
limit. Also with V6 the term star is no longer used to refer to blocks. Also
instead of Galaxy we use HBlock for hierarchical blocks.

About the Manual

This manual provides a tutorial introduction to Text Mode Capsim and is a
complete reference manual.

The original BLOSIM tutorial [1] and reference manual[2] including the
Blockgaze manual [3] have proven to be excellent guides in terms of
getting students and faculty up to speed in using BLOSIM at NC State
Univ. Therefore, XCAD has used all three in writing this manual. Sections
were deleted or added as necessary to reflect Capsim commands and

1The principal authors are Sasan Ardalan of the Dept. of Electrical and Computer
Engineering, North Carolina State Univertsity, Raleigh, NC , and Jim Faber, Colorado
State University, Fort Collins, Co.

Capsim® Text Mode Introduction 7

procedures. New sections have been added describing TCL interpreter
support and scripting.

Basic CAPSIM Design

Simulation topologies are constructed from any number of blocks. Each
block can be connected with input and/or output buffers over which data
samples are passed. A block is described by a subroutine in C-code. A
hierarchical block called an HBlock is described by a "topology file",
which is a readable text file description of connected blocks and sub-
HBlocks.

By connecting blocks together as a block diagram, one can create very
large simulations. Since multiple instances of the same block or HBlock
can be used, the system is completely hierarchical; simulations can be
designed and proven in pieces. Since block design is constrained by
certain rules, several engineers can contribute their designs to a library of
blocks and HBlocks which can be readily transported.

References

[1] D. J. Hait and D. G. Messerschmitt, A BLOSIM Tutorial , UC Berkeley
[2] D. J. Hait and D. G. Messerschmitt, BLOSIM Reference Manual, UC Berkeley
[3] D. G. Messerschmitt, BLOCKGAZE User's Manual (in print), UC Berkeley

Capsim® Text Mode Introduction 8

Capsim Text Mode Tutorial

Capsim® Text Mode Tutorial 9

1.0 A CAPSIM Text Mode Tutorial

1.1 Introduction

This tutorial introduces you to CAPSIM, a signal processing simulation
program. CAPSIM can be used to design simulations for a large number
of signal processing and communications applications, with a minimum
of programming overhead. The sections below will guide you through the
use of CAPSIM, without graphics, to create a few very simple
simulations. This tutorial parallels and enhances [1] to cover the new
features and capabilities of CAPSIM.

In this tutorial, whenever you are asked to type in text at your terminal or
workstation, the text is shown in bold-faced type. This is to prevent
you from confusing it with CAPSIM's output messages, which are shown
in a normal font. Naturally, when you use CAPSIM, everything will
be displayed on your terminal in the same type style.

1.2 Invoking CAPSIM

Before you start, you should make sure that CAPSIM has been installed
in an appropriate directory on your system . To invoke the non-graphical
CAPSIM, type

 % capsim -b

from the Shell. The system will respond

Capsim® Text Mode Tutorial 10

 Capsim Topology file: universe.t

followed by the prompt

 Capsim[1]>

CAPSIM is now ready to accept commands. Notice that the command
number appears with the Capsim prompt. In the following we will ignore
the number although it will appear on the terminal. Capsim has a history
mechanism for recalling commands and the command number will come
in handy.

1.3 Blocks, HBlocks, and the Universe

In CAPSIM, you construct simulations out of a number of building
blocks. These building blocks, known as blocks, correspond to small
pieces of simulation programming. Each block has inputs and/or outputs
over which data samples are passed. By connecting these blocks together
in a way analogous to creating a block diagram, you can execute very
large simulations. Since blocks can be used from simulation to
simulation, you can use CAPSIM to build up a library of blocks that is
suited to your own application needs. To help get you started, CAPSIM
is supplied with a large library of blocks object code that is
automatically loaded into memory when CAPSIM is invoked.

You can also combine building blocks together to form larger building
blocks, which can in turn be used to create more advanced simulations.
Building blocks that are created out of smaller ones in this way are
known as HBlocks. These concepts will become clearer as we go on.

The collection of blocks and HBlocks in a simulation is collectively
known as the universe. When you first invoke CAPSIM, the universe
is empty. To create a CAPSIM simulation, you must first bring copies of
the blocks and HBlocks that you are going to use into the universe.
You can then connect these blocks and HBlocks together; that is, you
specify the way data samples are to flow between them. The names of
the blocks and HBlocks, and the specification of how they are

Capsim® Text Mode Tutorial 11

interconnected, is known as a topology. A topology can be stored in a
file, so that the arrangement of the universe can be saved for later
simulations. Once you have created a universe, either by creating it with
CAPSIM commands or loading its topology from a file, you can run the
simulation to get the desired results. A universe is the top level of a
simulation hierarchy.

sine0 prfile0

prfilesine

block name

0 0

block type

buffer number

Figure 1.1

1.4 The Standard Block Library

To get started, the first thing you should do is see what blocks can be
created out of CAPSIM's standard library. To do this type

 Capsim> display s

CAPSIM will display a list of modules that were loaded as part of its
standard library. A block can be created by specifying the appropriate
module. Find the modules impulse and prfile in this list. You should
realize that even though these program segments are in the standard
library, there is nothing special about them. They are identical in
format to the code you will be writing yourself later on.

Capsim® Text Mode Tutorial 12

1.5 Parameters

Before you actually use one of these blocks, let's talk a bit about
parameters. A parameter is a value that you specify to affect the way the
block works. For example, the library module impulse is used to
generate an impulse data sequence, that is, a 1 sample followed by a
number of 0 samples. This number of trailing 0's is not fixed anywhere
in the program for impulse, but is specified by a parameter to an
impulse block. In fact, you can create several blocks based on impulse,
with each block having a different parameter value. In this manner,
simulation programming can be written in a very general manner, with
parameters not set until the time they are used.

HBlocks can also take parameters. In this case, the HBlock holds the
parameter values so that the blocks which make up the HBlock can use
them. A special parameter type called arg is used by the block to tell the
HBlock which parameter the block needs. For example, if our impulse
block above has a parameter of arg 3, it means that the number of 0
samples is equal to the value of the third parameter to the HBlock in
which impulse is contained. Just before the simulation is executed, the
value of this third parameter will be copied to impulse.

The programming for the block specifies how many parameters the block
expects there to be, what their types are (floating-point, integer, etc), and
how they are to be used. Also the prompt for the parameter is specified in
the block code by the block programmer. Impulse blocks take only one
parameter of type integer, and use this parameter to send out the proper
number of 0 samples. Note that if the number of parameters specified or
the type of parameters specified are incorrect CAPSIM will not generate
an error message until the simulation is run.

1.6 Using Blocks

Now you are ready to create a block.

 Capsim> block impulse0 impulse

Capsim® Text Mode Tutorial 13

This block requires parameters. To enter the parameters for a block make
sure that the block is the Current Block and then type:

 Capsim> chp

CAPSIM will respond by prompting you for all the parameters.
 Enter 1 new parameter(s):
 0: Number of generated samples:
 param int 128 ?==> 10

Impulse0 is the name of the block you are creating, while impulse is the
library module which contains its programming. Blocks may have a
name composed of any alphanumeric string of reasonable length, as long
as no other blocks or HBlocks in this universe have the same name. One
could also use the command block source impulse, or block impulse. In
the first case the block's name is source. In the second case, Capsim
automatically assigns a name impulse0. That is, it appends a 0 to the name
of the block to create a new name. If we issue another block impulse
command, the new block's name will be impulse1 and so on.

CAPSIM keeps track of the most recently created block, and displays
it after appropriate commands. The Current Block is used by some of
the other CAPSIM commands, as we shall see later.
 Current Block: block impulse0 impulse (lib)

In a likewise manner, create the block prfile0. Use the default parameter
for prfile, stdout:

 Capsim> block prfile0 prfile
 Capsim> chp

 Enter 2 new parameter(s):
 0: Name of output file::
 param file stdout ?==>Hit a return
 param file stdout
 1: Print output control (0/Off, 1/On)
 param int 1 ? ==>Hit a return
 param int 1

Here, rather than specifying a value for the parameter of prfile, you
have told prfile to use its internal default value for the first parameter.
Prfile is a block that takes data samples from its inputs and places them in
the file specified by the first parameter. The default value for this
first parameter is the standard output. Default parameter values are
specified by the block's programmer, and are included as a convenience
to the user. Hit return if the default is O.K.

Capsim® Text Mode Tutorial 14

1.7 Making Connections

Now you have a block that will generate data samples, and another block
which will consume data samples. To inform CAPSIM how the blocks
will relate to one and other you must tell CAPSIM how the blocks are to
be connected. To connect the output of impulse0 to the input of prfile0,
type

 Capsim> connect impulse0 prfile0 data

In this command, you are telling CAPSIM to connect the first output of
impulse0 (output number 0) to the first input of prfile0 (input number 0)
and to name this connection data. The naming of the connection (data in
this example) is optional. Each block can have a large number of inputs
and outputs (the exact number is implementation dependent). CAPSIM
will allow you to connect any block's output to any block's input, as long
as both blocks exist and the desired input or output is not already
connected. Errors are not flagged until the simulation is run. The number
of connections that a block has, and how they are used, is specified by the
block's programmer. Impulse (as well as impulse0) is designed to put
output samples on one output connection. If you connect anything to its
inputs, or connect its outputs to more than one other block, you will get an
error. CAPSIM will not give you this error, however, until you attempt
to run the simulation. It will then appear as a user error code. We will
talk about this later.

1.8 Checking the Universe

Now you have a universe consisting of two blocks connected together.
To see if CAPSIM's view of the universe agrees with your own, type

 Capsim> display a

CAPSIM will print every block or HBlock in the universe, and all the
connections between them. The parameters for each block or HBlock

Capsim® Text Mode Tutorial 15

are printed before the block or HBlock itself; this corresponds exactly to
the way that parameters are first placed on the Parameter Stack, and
then transferred to the next block or HBlock created. Here is a what is
displayed after entering the display a command.

Capsim-> display a

 parent HBlock UNIVERSE

arg -1 (none)

param int 10
block impulse0 impulse

param file stdout "Name of output file"
param int 1 "Print output control (0/Off, 1/On)"
block prfile0 prfile

connect impulse0 0 prfile0 0 data

 Current Block: impulse0 (block: impulse)

1.9 Running the Simulation

Now you can see if your simulation will work correctly. To run, type

 Capsim> run

If you did everything right, the impulse0 block should pass data samples
on to the prfile0 block, which then displays them on the standard
output:

 Output from Prfile 'prfile0'
 data
 1.000000
 0.000000
 0.000000
 0.000000
 0.000000
 0.000000

Capsim® Text Mode Tutorial 16

 0.000000
 0.000000
 0.000000
 0.000000
 0.000000

Note that, as expected, there are 10 “0” samples after the 1.

1.10 Changing the Parameters

Suppose that once you have created a block or HBlock, you wish to
change its parameters. You can do this with the chp command. This
command will cause CAPSIM to prompt the user for the parameters of the
Current Block. For example, let us say that you want the impulse0 block
to produce 20 zero's after the 1, rather than 10. First, you must make
impulse0 the Current Block. The forward, back and to commands
allow you to move around within the universe by changing the Current
Block.

 Capsim> to impulse0

Now that impulse0 is the Current Block, we can go ahead and change
its parameter value.

 Capsim> chp

You can verify the change you just made by typing display a, which
shows the contents of the entire universe. If your universe is very large it
is often more convenient to use the info command, which tells you about
the Current Block only:

Capsim® Text Mode Tutorial 17

 Capsim> info
 Parent: UNIVERSE
 Name: (impulse0)
 Type: BLOCK
 File: impulse.s (library)
 Status: Modified library

 Parameters:
 0: Number of generated samples (int) 20
 Inputs:
 (None)
 Outputs:
 0: prfile0 (prfile) 0 data

Try to run again:

 Capsim> run

Now the impulse sequence should contain 20 zero samples.

1.11 Saving the Universe

To save the universe that you have created, use the store command:

 Capsim> store

Since you did not specify a file name, CAPSIM will store this universe in
the default topology file, which is "universe.t". You will now be able
to run this simulation at a later time without having to rebuild the
universe, simply by loading "universe.t".

To save the universe that you have created under any name, use:

 Capsim> store topology_name

where topology_name is the name of the topology that is created to store
the information.(a post-fix .t will be added to the file name by CAPSIM).

Capsim® Text Mode Tutorial 18

1.12 Creating an HBlock (Hierarchical Block)

Now that you have a familiarity with the basic commands of CAPSIM,
you are ready to build more advanced simulations. We mentioned
before that blocks can be combined to form HBlocks, which can then be
connected in the same way that blocks are to form a universe.
Specifying the topology of an HBlock is identical to specifying the
topology of a universe, with one exception: since an HBlock will be
connected to other blocks or HBlocks, you must specify what the inputs
and outputs of an HBlock are. In fact, a universe is just an HBlock
with no outputs or inputs.

Armed with this information, let us create a simple HBlock: a one-
pole IIR filter. To specify the topology for this HBlock, we will need
blocks that add, multiply, and delay samples. Also, since in CAPSIM
connections can only be made between two blocks or HBlocks, we will
need a block that implements the fork operation; that is, a block that takes
data samples from one block and sends copies of them to two or more
other blocks. This block is called a node in CAPSIM. By using the
display s command to look at the library, we see that the blocks add,
delay, gain, and node are the blocks we are looking for.

Capsim® Text Mode Tutorial 19

Figure 1.2

First, let's clear out the universe so we can start from scratch:

 Capsim> new

The universe is now empty. Be very careful when you use this
command, as there is no turning back once you have destroyed the
universe. In this example we will use the alternate method of pre-
specifying the parameters. Now specify what blocks you will need, by
issuing the appropriate commands (notice that we let Capsim
automatically assign names to the blocks):

Capsim> arg 0 float 0.9 "Filter Pole"
Capsim> block add
Capsim> block delay
Capsim> block node
Capsim> block gain0 gain
Capsim>chp
 Enter 1 new parameters:
0:Gain factor
 param float 1 ?==> arg 0
Capsim>display a

 parent HBlock UNIVERSE (universe.t)

Capsim® Text Mode Tutorial 20

arg 0 float 0.9 (0.900000) "Filter Pole"

block add0 add (*)

param int 1 "Enter number of samples to delay"
block delay0 delay (*)

block node0 node (*)

(arg 0) param float 0.9 "Filter Pole"
block gain0 gain (*)

In the above sequence of commands, the first command specifies that the
HBlock has one parameter which is refered to as arg 0. Its type is floating
point and its default value is 0.9. Furthermore, when the HBlock is used as
a block, the prompt Filter Pole will appear in response to the chp
command. Of course the HBlock can have more arguments. In this
example only one is required. Rather than specifying a floating-point
value for the gain0 gain parameter, an arg parameter has been specified.
As we mentioned before, this means that the actual value to be used for
the coefficient will be taken from the parameters to the HBlock you are
now creating. When a copy of this HBlock is created for a simulation,
it must be given one parameter, of type floating point, which will specify
the value of the filter's pole. The 0 means parameter 0 that is, the first
parameter. In this way, you can use an HBlock many times, perhaps to
simulate a cascade of first-order filters, with each copy of the HBlock
using a different coefficient value.

Now make the connections:

 Capsim> connect input add0

Samples that are directed to the 0 input of this HBlock will be directed
to the 0 input of add0.

 Capsim> connect add0 node0
 Capsim> connect node0 gain0
 Capsim> connect gain0 delay0
 Capsim> connect delay0 add0
 Capsim> connect node0 output

Output samples for this HBlock will be taken from output 1 of node0.
The specification for a one-pole filter, with one input and one output, is
now complete. You should now store this topology, so that we can use it
later. Be sure to specify a file name, otherwise CAPSIM will store this
HBlock in the file "universe.t", overwriting what we put in there
before.

Capsim® Text Mode Tutorial 21

 Capsim> store filter.t

It may be worthwhile at this point to show what happens when we try to
run a simulation on a universe with inputs or outputs.

 Capsim> run
 <Error 42> Top level contains input/output
connections

You are now ready to use the HBlock you have created in a simulation.
In the case of the filter, you can obtain its impulse response by connecting
its input to an impulse block and its output to a prfile block, and
running the result. First, clear the universe again:

 Capsim> new

Now, load the universe that was created previously, containing
impulse0 and prfile0:

 Capsim> load universe

The universe now contains the two blocks you need (impulse0 and
prfile0). Of course, their connections are incorrect, but you can easily
take care of that.
First, let's use the HBlock command to create the HBlock:
 Capsim> HBlock filter

This command is similar to the block command, except that now the
filter argument represents the file where the HBlock's topology can be
found, rather than the name of a library block. You can call this HBlock
anything you'd like, subject to the same rules that exist for blocks (i.e.,
no other block or HBlock in this universe can have the same name).
Also note that Capsim will automatically assign a name filter0 to the
HBlock.

Now you can change the HBlock's parameter using the chp command. A
good test value for a pole is 0.90:

 Capsim> chp
 Enter 1 new parameters:
0: Filter Pole
 param float 0.9 ?==>0.9

Before you can connect up the universe, you need to remove the
connection that exists between impulse0 and prfile0 (if you don't believe
that this connections exists, use the display a to see what CAPSIM

Capsim® Text Mode Tutorial 22

thinks). To remove it, use the disconnect command, whose syntax is
identical to the connect command:

 Capsim> disconnect impulse0 prfile0

Now proceed with the necessary connections, just as you did before:

 Capsim> connect impulse0 filter0
 Capsim> connect filter0 prfile0

It would probably be a good idea at this point to do a display a to make
sure everything looks good:

Capsim> display a

Everything looks like it's ready. Use the run command to run the
simulation:

 Capsim> run

If you did everything correctly up until now, CAPSIM should print
twenty samples of the impulse response of the filter. You should
now store this filter so that you can use it in future simulations (put it in
"universe.t"):

 Capsim> store universe

You can now leave CAPSIM by issuing the quit command.

 Capsim> quit

1.13 Additional Hints

By now, you have all the information you need to construct any simulation
you desire. A complete list of CAPSIM's commands is given in Chapter
3; it includes a few commands that we have so far left out. In particular,

Capsim® Text Mode Tutorial 23

you may find the alias and unalias commands useful. These allow you to
redefine CAPSIM's commands, so that you can save on keystrokes.

When CAPSIM stores a topology in a file, it stores it as the sequence of
commands necessary to create the specified universe. Thus, the
topology file can be printed or edited like any other text file. You can
also create universes from the editor, and use CAPSIM only to run the
simulations. To do this, invoke CAPSIM with a valid topology file
specified:

 % capsim myuniverse.t

When invoked in this way, CAPSIM builds the universe according to
myuniverse.t, automatically executes a run command, and then exits.
The -l option,

 % capsim -l myuniverse.t

causes CAPSIM to initially load myuniverse.t and enter into the
interactive mode.

When CAPSIM starts up, it looks for a file named .capsimrc, first in your
current directory, and then in your home directory. If this file is found,
commands are read from it and executed before CAPSIM prints the
prompt. You may want to use this file to set up search paths for blocks
and HBlocks with the path command, to define aliases, or to turn off the
Current Block display.

More information about CAPSIM can be found in chapter 2.

CAPSIM REFERENCE 24 12/26/15

Capsim Text Mode Reference

Capsim Reference 25

2.0 CAPSIM Text Mode Reference

2.1 Introduction

The following reference manual is derived from and parallels the original
UC Berkeley manual2 and includes more commands and a number of
enhancements. Additions and changes have been made as necessary.

In CAPSIM, simulations are constructed out of a variety of building
blocks. Each building block, known as a block, represents a small
segment of object code that executes a part of the simulation. Blocks
are linked together by specifying the flow of data between them, in the
same way that you might wire together individual components in an
actual system. Once the system is built, CAPSIM can then simulate it by
executing each block independently, and transferring data samples
between them as needed.

Blocks can also be combined into larger, more complicated blocks.
Once the structure of these larger blocks, which are called HBlocks, is
defined, they can be interconnected in the same way as blocks. This
approach to simulation allows you to simulate large, complicated systems
without much of the overhead associated with single-application
simulation programming. Also, because of the standardized nature of
each block, simulation code written by different programmers can be
effortlessly tied together.

This reference manual gives a complete list of CAPSIM's capabilities,
and thus is not intended as an introductory guide. If you are not

2 D. J. Hait and D. G. Messerschmitt, BLOSIM Reference Manual, UC Berkeley

Capsim Reference 26

familiar with CAPSIM, it is suggested that you read chapter 1 prior to
reading this chapter.

2.2 The CAPSIM Environment

As we mentioned before, a CAPSIM simulation consists entirely of blocks
and their interconnections. A block can be a block, in which case it
refers to simulation programming, or it can be a HBlock, which means
that the block's function is described in terms of more primitive blocks
and the interconnections between them. For example, a digital filter can
be implemented as a block by writing simulation programming for it, or
as an HBlock by specifying an interconnection of multipliers, adders, and
delays, each of which is a block.

Blocks in CAPSIM always refer to a file that contains the programming
for the block. The file may be either compiled object code, a C program
in the proper format, or BLOCKGAZE source code 3. The name of this
file must be specified when the block is created. In addition, before a
block can be executed during a simulation, one copy of the compiled
code must be loaded into memory. CAPSIM sets up the private data
structures that allow many blocks to share this one copy.

Included with CAPSIM is a large standard library of commonly used
block object modules. This library has already been linked to the object
code for CAPSIM and is automatically loaded into memory when
CAPSIM starts up. Blocks whose object modules are part of the
standard library are known as library blocks. Since library blocks don't
actually reference files, you specify a module name rather than a file
name when you create a library block.

While each block refers to a simulation program segment, every
HBlock has associated with it a specification of what blocks it contains
and how they are interconnected. This specification is known in
CAPSIM as a topology, and is stored in a topology file. As with blocks,
the topology file for an HBlock must be specified at the time the
HBlock is created.

3D. G. Messerschmitt, STARGAZE User's Manual (in print), UC Berkeley

Capsim Reference 27

An HBlock can be built out of other HBlocks as well as blocks. In this
way, we can consider every block in CAPSIM to have a place in a
hierarchy. This hierarchy can be represented as a tree structure, with
each node of the tree being a CAPSIM block (a block or a HBlock). If a
node is a HBlock, it has a number of child nodes, each of which
corresponds to a block that is part of that HBlock. At the leaves of the
tree are the blocks, which have no children. Thus, each block in
CAPSIM has a parent HBlock, that is, the HBlock of which it is a part.

At the very top, or root, of the tree is a node whose children are the top-
level blocks of the simulation. This node is called the universe. It is a
HBlock, because like any other HBlock, it contains a number of blocks.
Unlike any other HBlock, however, the universe has no input or output
connections. In addition, the universe does not have to be explicitly
created by the user; it is automatically created by CAPSIM when the
system starts up, and is initialized to be empty.

CAPSIM allows you to display and edit only one HBlock at a time,
known as the current parent HBlock. When CAPSIM starts up, the
current parent HBlock is the universe. By using the up and down
commands (see below), you can move up and down the CAPSIM
hierarchy, displaying and changing blocks at different levels
independently.

Just as each HBlock has a topology file associated with it, the universe
has its own topology file. This universe topology file specifies which
blocks are to be included at the top level of the CAPSIM simulation, and
how they are to be interconnected. The default universe topology file is
named universe.t.

2.3 Running CAPSIM

To start up Text Mode CAPSIM, type the command capsim from the
Shell:

 % capsim -b

If your path is not setup type ./capsim –b.

Invoked in this way, CAPSIM works interactively. If instead, you
specify a file,

Capsim Reference 28

 % capsim file.t

CAPSIM will run non-interactively, by loading the file as the universe
topology, executing a run (see below), and exiting. Note that the file
name must end in ".t".

Other command options to CAPSIM are:

 % capsim -l file.t

Load the specified topology file, and then prompt for interactive
commands.

When CAPSIM starts up, it will check the current directory, and then
your home directory, for a file named .capsimrc. This file, if it exists,
should contain valid CAPSIM commands, one per line. CAPSIM will
read this file and execute the commands in it before displaying the
prompt (or before loading and executing the specified topology, if invoked
non-interactively). If any command in the .capsimrc file is in error,
CAPSIM will terminate prematurely. If CAPSIM is invoked with the -l
option, the .capsimrc commands are read before the -l file is loaded. To
leave CAPSIM, the exit command and the quit command work
identically:

 Capsim> exit
 Capsim> quit

2.4 Creating Blocks

The block command is used to create a block instance and places it in
the current parent HBlock. The first argument to this command is always
the name of the block to be created (the name you wish to give the
block). A block may have any name that is an alphanumeric string of
reasonable length. No two blocks in the same HBlock (or universe) may
have the same name.

The second argument to block tells CAPSIM the library name of the
block. If you need a block that does not already exist in your library you
will have to add it using precapsim (see section on precapsim).

For example,

 Capsim>block source sine

Capsim Reference 29

will create the block called source which produces a sinusoid.

Capsim also allows for the automatic naming of blocks. Thus

 Capsim>block sine

will produce the block named sine0. The index attached to the block is
equal to the number of instances of that block.

2.5 Creating HBlocks (Hierarchical Blocks)

To create a HBlock, use the HBlock command:

 Capsim> HBlock name topfile.t

The HBlock's name is name; the same rules apply as for blocks.
Topfile.t is a topology file (the ".t " suffix is mandatory).

The HBlock command searches for the specified topology file in the
directories in the HBlock path search list (see path below). Once found,
that file is used to create the internal structure of the new HBlock.
Since new blocks and HBlocks may be part of this structure, the HBlock
command may have to load in many other topologies or block object
code, and thus may take a few seconds to complete.

If any errors are found in either the specified topology file or the topology
file of one of the HBlock's children, a brief error message is printed, with
the name of the offending file, and the line number where the error
occurred. The HBlock whose topology file generated the error is cleared
of all blocks. In addition, that HBlock and all its ancestors (HBlocks that
contain it, and HBlocks that contain an HBlock that contains it, etc.)
are given the designation bad. This designation is printed every time a bad
HBlock is displayed (a simulation will not run when the universe
contains bad HBlocks). An HBlock can only become good again when it
is rebuilt from within CAPSIM, or when its file is fixed and it is
reloaded (this usually requires leaving CAPSIM).

Capsim also allows for the automatic naming of HBlocks. Thus

Capsim Reference 30

 Capsim>HBlock filter.t

will produce the HBlock named filter0. The index attached to the HBlock
is equal to the number of instances of that HBlock.

2.6 Parameters

A parameter is a variable argument to a block or an HBlock that can be set from
within CAPSIM prior to running a simulation. Blocks access the values of
their parameters through special subroutine calls (these calls are part of the
programming automatically generated by the XSLT script blockgen.xsl that
generates C code). An HBlock does not directly use the values of its parameters,
but instead passes the values on to the blocks and HBlocks of which it is
composed. Simply by changing the parameters values, many copies of a single
block or HBlock can be used in very different ways. For example, a ten-pole IIR
filter can have its tap values defined in terms of parameters, so that the same
filter can be used from application to application.

CAPSIM maintains a data structure internally called the Parameter Stack.
Parameters are set by placing the values on the Parameter Stack, and then
copying them to the appropriate block or HBlock. After the values are copied, the
Parameter Stack is cleared. The copying is done automatically when a block or
HBlock is created, so usually you specify what the parameters are before you
create the block or HBlock. This is not necessary, however. After the block or
HBlock is created use the chp command described below to change the blocks
parameters. This is the preferred method.

The param command places a parameter value of the specified type on the
Parameter Stack. The command must take one of the following forms:

 Capsim> param int integer

The parameter is an integer value.

 Capsim> param float floating-point

The parameter is a floating-point value.

 Capsim> param array size value1 value2 ...

Capsim Reference 31

The parameter is an array of values. The first number gives the size of the
array and must be an integer. The rest of the numbers list the contents of the array,
which may be floating-point. An array may not contain more than ten
elements.

 Capsim> param file file name

The parameter is the name of a file, which may be any UNIX file name.

 Capsim> param function function.c

The parameter is the name of a function. The function name must have a ".c"
appended to it, indicating that the function will be found in the file function.c.

 Capsim> param default

The block is to use a default value for this parameter. This default value must
be set within the block program.

 Capsim> param arg n

The parameter value is to be obtained from the nth parameter of the block's parent
HBlock. The value is copied just before the simulation is run.

Note: arg n must be defined using the arg command prior to being referenced by
block parameters.

To display the contents of the Parameter Stack, type

 Capsim> display p

To change the parameters of a block or HBlock that has already been created,
use the chp command:

 Capsim> chp

chp (<pindex> <pval>)
If no arguments : User is prompted for new values for parameters of the current
block. A <return> during prompt leaves value unchanged. If "default" is entered
at prompt, the value from the block model is used. If "arg n" is entered (n is a
non-negative integer), the value of parent parameter n is used. See command
"arg". If "arg -1" is entered, the current block value is maintained, but no longer
referenced to the parent.

Capsim Reference 32

<pindex> is the integer index of a defined parameter. This option allows you to
rapidly access a parameter without going through all parameters. Type info to get
a listing of the parameters.

<pval> : A given value string is interpreted according to the previously declared
parameter type. If pval == "default", the value from the block model is used. If
pval == "arg n", the value of parent parameter n is used. If pval == "arg -1", the
current block value is maintained, but no longer referenced to the parent.

This will copy the contents of the Parameter Stack into the parameters of the
Current Block, and clear the Parameter Stack. The user is prompted for the
parameters in a sequential manner.

Example:

 Current Block: sine0 (block: sine)
Capsim[7]-> chp
 Enter 5 new parameters:
0: Number of samples to generate
 param int 1000 ?==>
1: Magnitude
 param float 1 ?==>
2: Sampling Rate
 param float 8000 ?==>
3: Frequency
 param float 200 ?==>
4: Phase degrees
 param float 0 ?==>

2.7 HBlock Arguments

The arg command establishes a model for an HBlock parameter. In fact it
can be used to set a global parameter for the universe. For example, the
number of samples to generate and consume is the same for a several
source blocks. Instead of specifying the same number of samples for each
block, the parameter arg 0 is specified. Using the arg command the value
and prompt for arg 0 is set. Then if the number of samples was changed,
only arg 0 is modified. Otherwise, the parameter for each block must be
changed individually.

arg <argnum> <argtype> <argval>
(<"promptString">)

Capsim Reference 33

 <argnum> : normally, a non-negative integer.
 If negative, signals that HBlock has no parameters.
 <argtype>
 int : argval is an integer.
 float : argval is a float value.
 file : argval is a file name string.
 NULL : deletes this argument definition.

 <"prompt"> : String describing arg. It must be in quotes!
 This is transcribed to the corresponding parent
 HBlock block parameter.

When an HBlock is the current block, the chp command will cause the
above prompt for each parameter to appear.

Figure 2.1 This figure shows how block parameters relate to HBlock parameters.

Capsim Reference 34

Figure 2.2 Illustration of how global parameters can be handled in Capsim.

2.8 Connecting, Disconnecting and Naming Connections

To connect two blocks (blocks or HBlocks) together, use the connect
command:

 Capsim> connect block1 outnumber block2 innumber
signal_name

This causes a data connection to be created, allowing data samples to
move from the outnumber output of block1 to the innumber input of
block2. Data samples can only move from block1 to block2, not in the
reverse direction. The signal_name is used by blocks such as the plot
block to automatically generate legends and also is part of the information
displayed by the info command. If no signal name is specified CAPSIM
creates one itself of the form: blockname//output_number.dat.

Capsim Reference 35

sine0 prfile0

prfile
0

sine

block name

0

block type

buffer number

signal name

Figure 2.3 Connections.

To connect a block to the output of the block's parent HBlock, use this
form of the connect command:

 Capsim> connect block1 outnumber output
galoutnumber

This will direct data samples from the outnumber output of block1 out
through the galoutnumber output of block1's parent HBlock.

Similarly,

 Capsim> connect input galinnumber block2
innumber

causes data samples that arrive at this HBlock's galinnumber input to be
directed to the innumber input to block2.

Capsim Reference 36

Figure 2.4 Connect input add0 and connect node output command.

Disconnect has an identical syntax, and is used to remove a data link
between two blocks:

 Capsim> disconnect block1 outnumber block2 innumber
 Capsim> disconnect block1 outnumber output galoutnumber
 Capsim> disconnect input galinnumber block2 innumber

It is an error to connect to or disconnect from blocks that do not exist.

It is not necessary to specify the buffers in the connect and disconnect
commands.. Capsim will automatically assign them. For example you can
type,

 Capsim> connect source filter

In this case the next highest output buffer number of source is connected
to the next highest input buffer of filter. This is the usual method for
connections. If buffer numbers are specified then they will be used.

The name command is used to provide a name for the connection.

 Capsim>name <toblkname> <innum> <signalName>

The connection is verified as existing, "toblkname" cannot be "output".

Capsim Reference 37

2.9 Running a Simulation

To run a simulation, use the run command:

 Capsim> run

A simulation will not run if any one of the following conditions is
present:

 (1) The universe contains bad blocks.
 (2) The universe is empty.
 (3) A block within the universe is connected to input or output.

In addition, a block error code will be generated if one of the following
conditions is true:

 (1) A block has an incorrect number of input or output connections.
 (2) A block has an incorrect number of parameters, or one of its
parameters is of the wrong type.
 (3) A block uses an arg parameter that has not been properly set in
the block's parent HBlock.

If there are no errors, the simulation will halt when no block has data
samples left on any of its input buffers. Thus, any blocks in the universe
that are sources of data samples must eventually stop, otherwise the
simulation will continue indefinitely.

2.10 The Current Block

If the current parent HBlock is not empty, it will have a Current Block
associated with it. The Current Block is used by several other CAPSIM
commands. When block or HBlock is used to create a new block, that
block becomes the new Current Block.

After appropriate commands, the Current Block is displayed after each
command is executed, in one of the following formats:

Capsim Reference 38

 Current Block: block blockname blockfile
 Current Block: block blockname libblockname (lib)
 Current Block: HBlock HBlockname HBlockfile

2.11 Moving About

To change the Current Block, use the forward, back, and to
commands:

 Capsim> forward
 Capsim> back
 Capsim> to name
 Capsim> to (partial name)

CAPSIM places the blocks that are in the current parent HBlock on a list
according to the order in which they were created. You can view this
ordering by using the display a command (see below). The forward
command will cause the block that is listed after the existing Current
Block to become the new Current Block. Likewise,the back command
will cause the block that is listed before the existing Current Block to
become the new Current Block. The to command searches in a forward
direction until it finds a block with a name that matches the name or
partial name you provide. If the search reaches the end of the list, it starts
again at the beginning until it reaches the Current Block. A message is
printed if no match is found for the name pattern.

To move through the block hierarchy, use the up and down commands:

 Capsim> up
 Capsim> down

The up command causes CAPSIM to move the current parent HBlock
up one level. The last block that was created in the new parent HBlock
becomes the Current Block. If the current parent HBlock is the universe,
up will print an error message. Similarly, the down command causes the

Capsim Reference 39

Current Block to become the new parent HBlock. This command is in
error if the Current Block is a block.

Figure 2.5 The up and down commands.

2.12 Display, Info, and Man

The display command is used to print information about the current state
of the CAPSIM environment. We have already seen the display on and
display off commands, which control the display of the Current Block,
and the display p command, which displays the contents of the Parameter
Stack.

To display the complete topology of the current parent HBlock, type:

 Capsim> display a

This will print the name of each block and HBlock, what values their
parameters are set to, and how they are interconnected. This information
is displayed in terms of the commands that would have to be given to
CAPSIM to generate the existing universe. Thus, a block named

Capsim Reference 40

"myblock0" with an integer parameter set to 23 would be displayed as
follows:

 param int 23
 block myblock0 myblock

Example:

Capsim[6]-> display all

 parent HBlock zzhist (zzhist.t)

arg -1 (none)

param int 1000 "Number of samples to
generate"
param float 1 "Magnitude"
param float 8000 "Sampling Rate"
param float 200 "Frequency"
param float 0 "Phase degrees"
block sine0 sine

param float -1.2 "Start"
param float 1.2 "Stop"
param int 100 "Number of bins"
param file none "File to store result (none
is default)"
param int 1000 "Number of points"
block hist0 hist

connect sine0 0 hist0 0

 Current Block: sine0 (block: sine)

To see what blocks are in the standard block library, use the display s
command:

 Capsim> display s

This will print out the module name of each library block.

The display g command shows which HBlock topology files CAPSIM
knows about:

Capsim Reference 41

 Capsim> display g

These are topology files that have previously been used in an HBlock
command, or have been loaded by CAPSIM.

To display the name of the Current Block while the automatic display is
turned off, use display without an argument:

 Capsim> display

The info command gives more complete information about the Current
Block. It lists what values its parameters have, and what its connections
are:

 Capsim> info

Example:

Current Block: sine0 (block: sine)
Capsim[5]-> info
Parent: zzhist
Name: sine0 (sine0)
Type: BLOCK
File: sine.s (library)
Parameters:
 0: Number of samples to generate (int)
1000
 1: Magnitude (float) 1
 2: Sampling Rate (float) 8000
 3: Frequency (float) 200
 4: Phase degrees (float) 0
Inputs:
 (none)
Outputs:
 0: hist0 (hist) 0 sine0:0

If a detailed knowledge of exactly how the block is operating is required
then the man command is used. The man command gets the source file
(".s" or ".t") for the current block. To get a specific source file man may
also be issued with an argument that is a file name.

Capism> man [filename.s, filename.c, filename.t]

To get on-line help type man command. For example man chp. To get a
summary of the commands type man capsim.

Capsim Reference 42

Note: In all cases paths must be setup to the block., HBlock, and
documentation files using the path command. It is a good idea to place the
path to documentation in the .capsimrc startup file.

2.13 Loading and Storing

The load command causes CAPSIM to try to load a topology from a file:

 Capsim> load
 Capsim> load file

If no file is specified, and the currently displayed HBlock is the universe,
CAPSIM loads the default universe file (universe.t, if no other is
specified with the -t option). If the currently displayed HBlock is not
the universe, CAPSIM tries to load the file associated with this
HBlock.

The load command acts recursively; that is, if any HBlocks are part
of the loaded topology, their topologies are also loaded. During the load,
if any topology files are in error, the name of the offending file and
the line number are printed along with the appropriate error message.
HBlocks that could not be loaded, or that contain HBlocks that could not
be loaded, are given the designation bad. A universe containing bad
HBlocks can not be run (see the HBlock command above).

To store a HBlock, use the store command:

 Capsim> store
 Capsim> store file

If no file is specified, the rules are the same as for load. Note that store is
different from load in that it only stores the topology of the currently
displayed HBlock, not the topology of any of its children.

Capsim Reference 43

2.14 Removing Blocks

The remove command first disconnects the Current Block from all
blocks to which it is connected. The Current Block is then removed. If
the parent HBlock is not empty, another block becomes the Current
Block. Therefore, first use the to command to go to the desired block (
making it the Current Block) then use the command:

 Capsim> remove

Current Block

Topology Before Remove Command

Topology After Remove Command
Figure 2.6

The new command removes every block in the parent HBlock:

 Capsim> new

Capsim Reference 44

2.15 Deleting Blocks

The delete command removes the Current Block from the current
HBlock but not the connections. All block connections are restored
"through" the block; i.e., connections with the matching i/o numbers are
remade. Unmatched connections are removed. If the current block is a
HBlock, all sub-HBlocks are removed.

 Capsim> delete

Capsim Reference 45

Figure 2.7

Capsim Reference 46

2.16 Inserting Blocks

The insert command is used to insert the Current Block before(-) or
after (+) a block into a connection. Connections are restored to the next
available ports in the current block.

 Capsim> insert <+/-> <blkname> <connum>

HBlock "input" and "output" are valid block names.

Figure 2.8

Capsim Reference 47

2.17 Replacing Blocks

The replace command allows the user to replace a block (Current Block)
with another block. First make the block to be replaced the current block.
Then issue the command:

 Capsim>replace (<name>) <modelname>

 "modelname" must be a defined block or HBlock type. If "name" is
supplied, it must be unique. A default name is generated if "name" is not
given. All parameters are overwritten from the model.

Figure 2.9

Capsim Reference 48

2.18 Search Paths

By default, CAPSIM only searches in the current working directory for
block and HBlock files. You can use the path to specify alternate paths to
search in. This allows you to keep all your blocks in a set of
directories, and HBlocks in a different set.

 Capsim> path s pathname

adds pathname to the list of directories that are searched when CAPSIM
looks for a block file, and

 Capsim> path g pathname

adds pathname to the list of directories that are searched for HBlocks.

 A path to online documentation may also be specified.

 Capsim> path d pathname

2.19 Aliases

CAPSIM contains an alias facility. When a command is presented to
CAPSIM, each word that makes up the command is checked to see if it is
an alias for a string. If so, the string is substituted for the alias before the
command is executed. For example, if "pint" is an alias for "param int",
then

Capsim Reference 49

 Capsim> pint 20

is equivalent to

 Capsim> param int 20

To set an alias, use the alias command:

 Capsim> alias alias substitution

To remove the substitution, use unalias:

 Capsim> unalias alias

The alias expansion is disabled when setting or unsetting aliases, in
order to avoid some disturbing situations.

To display what aliases are currently active, type alias without an
argument:

 Capsim> alias

Capsim Reference 50

2.10 The Shell Command

To execute a UNIX shell command from within capsim type sh
command. For example to edit a topology type sh vi test.t. To get a
directory of topologies type sh ls *.t .

It is a good idea to define a number of aliases in the .capsimrc file such as:
alias ls sh ls
alias date sh date.

2.19 History

The command shell has a simple history mechanism, similar to UNIX: "!!"
means repeat last command, "!5" means repeat command 5, "!ab"means
repeat the latest command beginning with characters "ab", etc. The
accessible commands can be viewed by typing "display h". Command
indices are shown with the prompt.

Capsim Reference 51

51

2.20 Inform

The inform command is to specify the Title, Author, Date, and Description of the
universe or HBlock.

To display the title/author/date/description type:

 Capsim> inform p

To change the information use the following commands:

 Capsim> inform title This is the title
 Capsim> inform author First Name Last Name etc.
 Capsim> inform date July 20 1990
 Capsim> inform descrip Description of the
topology

In the above, the underlined character indicates a required character for each
command. This can be used to shorten the command. For example, all of the
following commands are valid:

 Capsim> inform t This is the title
 Capsim> inform tit This is the title
 Capsim> inform des This is a description
 Capsim> inform de This is a description

The information supplied by the inform command will be stored at the top of a
universe/HBlock as follows:
 #--
 #Title:
 #Author:
 #Date:
 #Description:
 #--

Capsim Reference 52

52

Capsim Reference 53

53

TCL Interpreter 54

Capsim TCL Interpreter

TCL Interpreter 55

3.0 Capsim TCL Interpreter

3.1 Introduction

Capsim V6 has scripting support using a built in TCL interpreter. A major
goal of adding TCL scripting is to support iterative simulations and to
support TCL command interface to numerical packages such as LAPACK.

The TCL commands support all of the Capsim commands with the
addition of new commands to refer to parameters by name and to change
their value. Also Capsim blocks can return values from simulations via
TCL variables.

3.2 TCL Script

The best way to see the power of TCL scripting is to review a TCL script
for creating a table of BER (bit error rate) versus SNR (signal to noise
ratio) in the simulation of a QPSK digital link.

TCL Script that tabulates the BER for various SNR's
The sys-ete-ber.t topology implements a
QPSK digital communications link
The number of bits is different for each SNR
The script demonstrates coupling of two different
paramters per simulation.
The script stores the results of each run in a list.
At the end of the iteration loop the results are
tabulated.

Author: Sasan Ardalan
June 25th, 2006

new

set snr { -2 0 2 5 7 }
set bits { 10000 10000 100000 100000 10000000 }

capload sys-ete-snr.t

TCL Interpreter 56

set berResults [list {}]
foreach snrVal $snr numbits $bits {

 #
 # for each value of SNR $snr and corresponding
 # number of bits $bits set the parameters
 # in the topology. The number of bits is a global
 # parameter in arguments.
 # to change the SNR we first make the set SNR block
 # the current block. We then set the parameter
 # using the Capsim TCL command parambyname
 #
 arg 3 int $numbits "number of bits"
 to setsnr0
 parambyname snr $snrVal

 run

 #
 # when the simulation is run, at the end of the
 # simulation the ecountfap0 block stores the BER in
 # the TCL variable $ecountfap0_ber
 #

 puts -nonewline "$snrVal : $numbits "
 puts "BER=$ecountfap0_ber"

 # gather the results in a list for each simulation

 lappend berResults [list $snrVal $ecountfap0_ber]

}

Create a table of BER versus SNR

puts [llength $berResults]
puts -nonewline SNR
puts -nonewline "\t"
puts BER

foreach value $berResults {
 puts -nonewline [lindex $value 0]
 puts -nonewline "\t"
 puts [lindex $value 1]

}

In the above script the key points are that once a topology is loaded, sys-
ete-snr.t in this case, we can access any block parameter by name. We can
also access the topology arguments. Furthermore, once a simulation is run,
blocks can store their results in TCL variables. In this case the BER is
stored in the variable $ecountfap0_ber.

TCL Interpreter 57

The results of the simulation are:

SNR BER
-2 0.05677
0 0.023237
2 0.005626
5 0.000220
7 5.000000e-06

Another important aspect of TCL scripts is that TCL commands including
mathematical expressions can be used to set parameter values prior to
running a simulation.

Finally, using TCL scripting algorithms can be developed for optimization
of designs. In addition, sensitivity studies can be performed where the
sensitivity of overall system performance to parameter variation can be
analyzed.

Here is another Capsim TCL script example. Figure 3.1 shows the
topology for iirtest.t. A sine wave is generated and filtered by an IIR low
pass filter. Its rms value is calculated using the stats block. The TCL script
changes the frequency parameter in the sine block (freq), runs a
simulation, and retrieves the measured RMS value of the filter output from
the stats block. The stats0 block returns the RMS value as a TCL variable
stats0_rms.

sine0 iirfil0 stats0 prfile0

Figure 3.1 iirtest Topology

TCL Script that iterates a number of
simulations
The iirtest topology is a sine wave filtered by
a low pass IIR filter
The filtered samples are processed by the
"stats" block which computes the
RMS value.
The script stores the results of each run in a
list.

TCL Interpreter 58

At the end of the iteration loop the results
are tabulated.

Author: Sasan Ardalan
June 25th, 2006

new
capload iirtest

#turn the printer probe off
to prfile0
parambyname control 0

set freq 0
to sine0
set results [list {}]
for { set i 0} { $i < 10 } { incr i} {
 set freq [expr $freq+1000]
 puts $freq
 parambyname freq $freq
 run
 puts $stats0_sigma
 lappend results [list $freq $stats0_sigma]

}
puts -nonewline Freq
puts -nonewline "\t"
puts RMS

foreach value $results {
 puts -nonewline [lindex $value 0]
 puts -nonewline "\t"
 puts [lindex $value 1]

}

The results of the simulation are:

Freq RMS
1000 0.68096101284
2000 0.690733492374
3000 0.672446846962
4000 0.152041137218

TCL Interpreter 59

5000 0.038574591279
6000 0.027747457847
7000 0.0252503212541
8000 0.0251301862299
9000 0.0249269343913
10000 0.0243778862059

The iirtest.t topology is provided below. Note that the freq parameter that
changes the frequency of the sine wave generator block is highlighted (the
TCL command parambyname is used to change the frequency):

arg -1 (none)

param int 128 num_of_samples "total number of samples
to output"
param float 1 magnitude "Enter Magnitude"
param float 32000 fs "Enter Sampling Rate"
param float 1000 freq "Enter Frequency"
param float 0 phase "Enter Phase"
param float 1 pace_rate "pace rate to determine how
many samples to output"
param int 128 samples_first_time "number of samples on
the first call if paced"
block sine0 sine

param file stdout file_name "Name of output file"
param int 1 control "Print output control (0/Off,
1/On)"
param int 0 bufferType "Buffer type:0= Float,1=
Complex, 2=Integer"
block prfile0 prfile

param int 0 skip "Points to skip"
param file stat.dat stat_file "File to store results"
block stats0 stats

param int 3 desType
"1=Butterworth,2=Chebyshev,3=Elliptic"
param int 1 filterType
"1=LowPass,2=HighPass,3=BandPass,4=BandStop"
param float 32000 fs "Sampling Frequency, Hz"
param float 0.1 pbdb "Enter Passband Ripple in dB's"
param float 35 sbdb "Enter Stopband Attenuation in
dB's"
param float 3400 fpb "Passband Freq.
Hz/LowPass/HighPass Only"
param float 4400 fsb "Stopband Freq.
Hz/LowPass/HighPass Only"
param float 220 fpl "Lower Passband Freq.
Hz/BandPass/BandStop Only"
param float 3400 fpu "Upper Passband Freq.
Hz/BandPass/BandStop Only"
param float 10 fsl "Lower Stopband Freq.
Hz/BandPass/BandStop Only"
param float 4400 fsu "Upper Stopband Freq.
Hz/BandPass/BandStop Only"
param file tmp name "Filter name"
block iirfil0 iirfil

TCL Interpreter 60

connect sine0 0 iirfil0 0
connect prfile0 0 stats0 0
connect iirfil0 0 prfile0 0

TCL Interpreter 61

3.2 Capsim TCL Command Summary

In the following summary of TCL commands, most commands are
exactly the same as the Capsim commands with the following exceptions:

To store a topology the TCL command is capstore instead of store.
To load a capsim topology the TCL command is capload instead of load.
The Capsim command info in TCL is getinfo.

TCL Commands:

display [g or s]
block block_model,or block block_name

block_model
replace block_model,or block block_name

block_model
HBlock block_model, or HBlock block_name

block_model
chp [param number] [paramvalue]
connect blockNameSrc [port] blockNameDest

[port]
disconnect blockNameSrc [port] blockNameDest

[port]
run
new
to path_to_block
capstore [file_name]
capload file_name
arg argnum argtype argval "argprompt"
up
down
back
forward
setCellInc integer (number of cells allocated to

increase buffer FIFO)
setMaxSeg integer (Maximum number of cell

increments, setting too high may cause memory over flow. Too
low results in buffer over flow)

path [sgd] thePath

TCL Interpreter 62

remove
delete
insert <-,+> <specifiedBlockName> <i,o

number>
signame name_to inNum sigName
inform field info
makecontig
state
getinfo
man block
parambyname name value

Capsim Command Summary 63

Capsim Command Summary

Capsim Command Summary 64

4.0 CAPSIM COMMAND SUMMARY

Capsim (Capture and Simulate) is an interactive, sampled data simulation
package. The program is controlled via commands which come either
from user input or from topology (~.t) files. The command shell has a
simple history mechanism, similar to UNIX: "!!" means repeat last
command, "!5" means repeat command 5, "!ab"means repeat the latest
command beginning with characters "ab", etc. The accessible commands
can be viewed by typing "display h". Command indices are shown with
the prompt. There is also a simple aliasing utility for the first word of a
command. See "alias" below. The commands listed below are grouped by
function. There is a documentation file for each command. To view any of
these while Capsim is active, type (e.g.) "man block".

capsim print this documentation file
block create a block current bloc
HBlock, create an HBlock current block
replace change the current block model type
store save current HBlock into a topology file
load load a topology file into current HBlock
connect block buffer connection
disconnect block buffer disconnection
inform Update and/or display info, author, date etc.
insert insert current block into an old connection
name give a name to the buffer connection
remove, remove current block from HBlock
delete, remove current block but restore any connections
new remove all blocks in current HBlock
quit, exit leave capsim with/without change confirmation
param, chp block parameter specification, change
arg HBlock parameter-model specify
up, down, movement between topology levels
forward, back movement between blocks in the current HBlock
to move to the block with name matching a string
display status display (several options)
path create search path(s) to various file groups
alias, unalias define simple strings for various commands
man, sh manual (file) reference; perform a shell command
< filename get commands from the file filename.
inform specify title/author/date/description of universe/HBlock

Capsim Command Summary 65

alias, unalias : Define or undefine alias strings for commands.

alias (<shortWord> <commandString>)
 : if no arguments are given, all currently defined
 alias pairs are printed.

 <shortWord> : A single word, which will imply "commandString".
 A subsequent use of "shortWord" on the Capsim
 command line will be expanded to "commandString".
 Only the latest alias of "shortWord" is kept.

<commandString> : An arbitrary number of words. The first word
 MUST be a legitimate Capsim command word.

unalias <shortWord>
 : eliminate "shortWord" as a keyword.

arg : Establish a model for an HBlock parameter.

arg <argnum> <argtype> <argval> (<"promptString">)

 <argnum> : normally, a non-negative integer.
 If negative, signals that HBlock has no parameters.
 <argtype>
 int : argval is an integer.
 float : argval is a float value.
 file : argval is a file name string.
 NULL : deletes this argument definition.

 <"prompt"> : String describing arg. It must be in quotes!
 This is transcribed to the corresponding parent
 HBlock block parameter.

Capsim Command Summary 66

up, down, forward, back, to

These commands are used to change the current block (CB).
The current HBlock (CG) is always the parent of CB.

up : up one level, if CG is not the top level.
 CB = CG. CG = CG's parent.
down : down one level, if CB is a HBlock.
 CG = CB. CB = CB's child.
forward : CB = CB's forward sibling. This will wrap around.
back : CB = CB's backward sibling. This will wrap around.

to <arg>: movement via pattern match to block name. Compound
 arguments are allowed. Matching proceeds until failure.
 Partial patterns will work.
 <args>
 * : move to top level.
 . : move up, if possible. ("to ." = "up")
 / : move down, if possible. ("to /" = "down")
 "pat" : move forward to match "pat", if possible.

param, chp : Set parameters, change parameters.

param <ptype> <pval>
 <ptype>
 int : pval is an integer.
 float : pval is a float value.
 file : pval is a file name string.
 function : pval is a function name string ending in ".c".
 array : pval is a sequence of numbers.
 The first is an integer denoting the array size.
 Then follows that number of float values.
 arg : pval is an integer, denoting the index of the
 HBlock parameter to reference. See command "arg".
 default : (no pval) ptype and pval retrieved from block model.

Capsim Command Summary 67

chp (<pindex> <pval>)
 no arguments : User is prompted for new values for parameters of the
 current block. A <return> during prompt leaves value
 unchanged. If "default" is entered at prompt,
 the value from the block model is used. If "arg n"
 is entered (n is a non-negative integer), the value
 of parent parameter n is used. See command "arg".
 If "arg -1" is entered, the current block value is
 maintained, but no longer referenced to the parent.
 <pindex> : integer index of defined parameter.
 <pval> : A given value string is interpreted according to the
 previously declared parameter type. If pval ==
 "default", the value from the block model is used.
 If pval == "arg n", the value of parent parameter n
 is used. If pval == "arg -1", the current block value
 is maintained, but no longer referenced to the parent.

connect, disconnect : control block data buffer connection.
insert : put current block between old connection.
name : name the signal for a connection.

The connect and disconnect commands have several allowed formats,
with different degrees of io number interpolation.
("blkname" is the block instance name or "input" or "output".)

connect

1) connect <fromblkname> <outnum> <toblkname> <innum>
(<signalName>)
 : This is a complete specification, as in ~.t files
 It will be verified as being available.
 A one word signal name is optional; a default name is
 created, but not displayed.
2) connect <fromblkname> <toblkname>
 : outnum and innum are chosen as "lowest available".
3) connect <fromblkname> -1 <toblkname> <innum>
4) connect <fromblkname> <outnum> <toblkname> -1

Capsim Command Summary 68

5) connect <fromblkname> -1 <toblkname> -1
 : If an io number is -1, the lowest available is chosen.

disconnect

1) disconnect <fromblkname> <outnum> <toblkname> <innum>
 : This is a complete specification to remove a previous
 connection. It will be verified as existing.

2) disconnect <fromblkname> <toblkname>
 : outnum is set as "highest available connection to toblk".
 If fromblkname is "input", innum is "highest from input".

3) disconnect <fromblkname> -1 <toblkname> <innum>
4) disconnect <fromblkname> <outnum> <toblkname> -1
 : if an io number is set to -1, it is interpolated.

insert <+/-> <blkname> <connum>
 : The current block is to be inserted before (-) or
 after (+) block "blkname", into connection "connum".
 The named block, and the specified connection must exist.
 ("input" and "output" are valid block names.)
 Connections are restored to the next available ports in the
 current block. Signal names are propagated if available.

name <toblkname> <innum> <signalName>
 : The connection is verified as existing.
 "toblkname" cannot be "output".

Capsim Command Summary 69

remove, delete, : remove current block(s) from current HBlock
new

remove : remove current block from current HBlock.
 All block connections are removed.
 If the current block is a HBlock, all sub-HBlocks
 are removed.

delete : remove current block from current HBlock.
 All block connections are restored "through" the
 block; ie, connections with the matching i/o numbers
 are remade. Unmatched connections are removed.
 If the current block is a HBlock, all sub-HBlocks
 are removed.

new : delete all blocks in the current HBlock and
 any sub-HBlocks. There is a prompt for user
 verification if there have been any changes in
 the current HBlock, or any sub-HBlocks.

display, info : Display information about several things.

info : Display information about the current block.

display <option>: Display has several options. Only the first
 character of the option word is actually referenced.
 <option>
 none : Display information about the current block.
 a(ll) : Display the current HBlock topology. The format
 is very similar to that of a stored topology file.
 A "(*)" after a block name means that it has been
 changed, ie, the corresponding topo file is out of
 date. This is cleared if the HBlock is stored.
 s(tars) : Show all currently known blocks.
 g(alaxies) : Show all currently known blocks.
 h(istory) : Show the command history array.

Capsim Command Summary 70

quit, exit : Leave capsim with/without change confirmation.

quit : Prompt for verification, if there have been any
 changes in the current universe. The changes are
 noted by HBlock of occurrence. Changes can be
 cleared by storing appropriate HBlocks.
exit : Unconditional exit.

block, HBlock : create a new block or HBlock block;
replace : replace the current block; leave connections.

block (<name>) <modelname>
HBlock (<name>) <modelname>
 : "modelname" must be a defined block/HBlock type.
 See command "display s", or "display g".
 If "name" is supplied, it must be unique.
 A default name is generated from "modelname"
 if "name" is not given.
 If no "param" commands have been previously issued,
 default parameters are created from the model.
 Else, any non-conforming parameters are overwritten.

replace (<name>) <modelname>
 : "modelname" must be a defined block or HBlock type.
 If "name" is supplied, it must be unique.
 A default name is generated if "name" is not given.
 All parameters are overwritten from the model.

Capsim Command Summary 71

store, load : store or load current HBlock.

store (<modelname>)
 : If "modelname" is not given, the current HBlock
 is stored in the current directory under name
 "currentHBlockName.t"
 If "modelname" is given, the HBlock is stored
 in the current directory under name "modelname.t"
 Additionally, if the current HBlock is the top
 level, the HBlock is renamed as "modelname".

load (<modelname>)
 : If "modelname" is not given, the current HBlock
 name is used. The HBlock path list (see command
 "path g") is used to locate the file "modelname.t".
 This file is then loaded into the current HBlock.
 All sub-HBlocks are also loaded as necessary.
 User verification is sought if the overwritten
 HBlocks have any changes in them. The HBlock name
 is changed to "modelname" if new.

man, sh : review pertinent files; perform shell commands

man (<string>) : Find file and send to 'more' ('type' for VMS)

 <string>
 none : Look up base file for current block.
 If block, use block paths to find "blkname.s" file.
 If HBlock, use HBlock paths to find "blkname.t" file.
 "name.s" : Use block paths to find "name.s" file.
 "name.c" : Use block paths to find "name.c" file.
 "name.t" : Use HBlock paths to find "name.t" file.
 "name.x" : Converted to "name.s", and block paths used.
 "name" : Use documentation paths to find "name.doc" file.

sh <string> : Perform "string" as a shell command and return to
 Capsim. String can be of arbitrary length, words.

Capsim Command Summary 72

path : Define or review that path(s) to several file directories.

path <string> (<newpath>)

 <string> : Note only the first character of string is used.

 s(tars) : If no "newpath" string, display all current paths
 to directories holding ~.s files. Else, add
 "newpath" to block paths.
 g(alaxies) : If no "newpath" string, display all current paths
 to directories holding ~.t files. Else, add
 "newpath" to HBlock paths.

Capsim Command Summary 73

remove, delete, : remove current block(s) from current HBlock
new

remove : remove current block from current HBlock.
 All block connections are removed.
 If the current block is a HBlock, all sub-HBlocks
 are removed.

delete : remove current block from current HBlock.
 All block connections are restored "through" the
 block; ie, connections with the matching i/o numbers
 are remade. Unmatched connections are removed.
 If the current block is a HBlock, all sub-HBlocks
 are removed.

new : delete all blocks in the current HBlock and
 any sub-HBlocks. There is a prompt for user
 verification if there have been any changes in
 the current HBlock, or any sub-HBlocks.

run : Run a Capsim simulation on current topology
 This command can be issued while anywhere
 within a topology.
 There are several conditions that will cause a
 run error:
 - incomplete connections:
 - non-contiguous i/o buffer numbers
 - missing HBlock connections
 - input/output connection(s) in top level
 - improper connections for a particular block
 - improper parameter values for a block
 All these errors are described as they occur.

< filename : Execute commands in the file: filename.

Capsim Command Summary 74

 This is a very useful command especially for sequential runs
 or parameter iteration. After a topology is entered, a series of
 repetitive commands which change one or more parameters
and
 run the simulation can be executed from a file. The file itself
 may be created from a C program or a shell script.

APPENDIX 75

Appendix 76

Appendix A

CAPSIM Capability Improvements Over BLOSIM

Many features have been added to improve simulation design and run-time efficiency.

-program re-organization, saving 20% on executable size.

- improved scheduling algorithm.
Before a simulation is run, blocks are "scheduled" or put into an appropriate order
of execution by the controller. The new algorithm selects a more efficient
ordering.

- improved run-time control of data buffer size. Previously, certain buffers could
grow abnormally large, requiring excessive memory usage. Buffer size is now
balanced throughout the topology via an improved visitation algorithm.

- data buffer de-allocation, allowing multiple runs. Previously, multiple runs
would overflow available memory.

- internal block (both block and HBlock) parameter model storage, specification,
and definition. This provides consistency checking and prevents run-time errors.
Additionally, the block author now specifies parameter default values and
definitions.

- parameter broadcast (via "args") is possible even from the highest topology
level.

- buffer signals can be named. These signal names are accessible by the block
operational code, for printing, labeling, etc, and are displayed for reference.

- compilation is controlled internally for either UNIX or VMS operating systems.
Allows maintenance of a single program version for use on several systems, and
allows less painful installation.

- Argument numbers may be noncontiguous. However, when stored they become
contiguous.

Appendix 77

CAPSIM Convenience Improvements

Many features have been added or improved to aid the user in creating, editing and
running simulations.

- on-line parameter changes with prompting; automatic type checking and
compatibility enforcement for HBlock referenced parameters (args).

- on-line help descriptions for all commands.

- on-line review of block/HBlocksource files.

- command history: repeat/review of previous commands.

- command alias mechanism allows shortened commands.

- new movement command "to":
accepts full or partial name for a block or HBlock.

- change checking: prevents inadvertent exit or re-loading before
saving a modification.

- run a simulation from any location in the topology.

- improved information display format:
block modification status, parameter descriptions, signal names,HBlock argument
values and descriptions.

- improved error reporting:
full block path names used; complete messages from block errors.

- simplified block creation:
automatic instance name, default parameter creation.

- simplified block connection/disconnection:
automatic default port numbering.

- re-loading of any sub-topology is possible.

- Buffer growth monitoring. This facility allows the user to monitor the growth of
buffers during simulations.

Appendix 78

- new command "replace": pin-for-pin block substitution.
HBlocks can be substituted for blocks, etc. Connections are saved, and parameters
are modified automatically.

- new command "insert": put a block into an existing connection.
Useful for temporary measurement blocks, etc.

- new command "delete": remove a block, but restore connections.

- Single command to make buffer numbers contiguous.

Appendix 79

CAPSIM Reliability Improvements

Besides the addition of new features,the original program has been extensively remodeled
and re-organized. This has dramatically improved code understandability, which is
important for maintenance and debugging.

- elimination of bugs through two years of personal and classroom use.

- redefinition of several key data structures.

- use of doubly linked lists.

- routines organized into more closely related source files.

- "linting" and cleanup of variables.

- improvement of "blockgaze",
a program which converts block primitive code to block compilable code
(i.e. block.s -> block.c).

- all added features are backward compatible with old HBlock topologies and old
block primitive code.Automatic conversion takes place as necessary.

- general program logic overhaul: this is evidenced by the fact that even with all
the added functionality described above,the number of source lines is less than
original;in fact, executable size is 20% less than original.

Appendix 80

Appendix B

Sample Capsim Session

The following is an actual Capsim session. It follows the tutorial in chapter 2. Bold letters
are the keyboard inputs.

%capsim -b

Capsim/Blosim 3.2
Copyright (c) 1989 XCAD Corporation
All rights reserved.

 Topology File: universe.t
Capsim[0]-> display s
add addnoise arprocess atod bdata
bpf casfil cmux cmxfft cmxfftfile
cmxifft convolve cubepoly cxmag cxmult
cxphase cxreal dco delay demux
divby2 dtoa ecount eye filtnyq
firfil freqimp gain gauss hist
hold iirfil impulse intdmp jitter
lconv linecode lpf mixer mulaw
mux nl node null plot
prfile pulse rdfile resmpl scatter
sdr sine sink skip slice
spectrum sqr sqrtnyq stats stcode
sum time toggle transline v29
zc zero

 Ratio of LIBRARY Block type: 67/70

 Ratio of CUSTOM Block type: 0/70

Capsim[1]-> block impulse0 impulse
Capsim[2]-> block prfile0 prfile
Capsim[3]-> connect impulse0 prfile0
Capsim[4]-> to impulse0
 Current Block: impulse0 (block: impulse)
Capsim[5]-> chp
 Enter 1 new parameters:
0: Enter number of samples
 param int 128 ?==> 10
Capsim[6]-> run

Appendix 81

Output From Prfile 'prfile0'
impulse0:0
1
0
0
0
0
0
.
.
.
0
0
0
0
Capsim[9]-> info
Parent: UNIVERSE
Name: impulse0 (impulse0)
Type: BLOCK
File: impulse.s (library)
Status: Modified
Parameters:
 0: Enter number of samples (int) 10
Inputs:
 (none)
Outputs:
 0: prfile0 (prfile) 0 data

Capsim[10]-> chp
 Enter 1 new parameters:
0: Enter number of samples
 param int 10 ?==> 20
Capsim[11]-> run

Output From Prfile 'prfile0'
data
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Capsim[12]-> store

Appendix 82

Capsim[13]-> new
Capsim[14]-> arg 0 float 0.9 "Filter Pole"
Capsim[15]-> block add0 add
Capsim[16]-> block delay0 delay
Capsim[17]-> chp
 Enter 1 new parameters:
0: Enter number of samples to delay
 param int 1 ?==>
Capsim[18]-> block node0 node
Capsim[19]-> block gain0 gain
Capsim[20]-> chp
 Enter 1 new parameters:
0: Gain factor
 param float 1 ?==> arg 0
Capsim[21]-> display a

 parent HBlock UNIVERSE (universe.t)

arg 0 float 0.9 (0.900000) "Filter Pole"

block add0 add (*)

param int 1 "Enter number of samples to delay"
block delay0 delay (*)

block node0 node (*)

(arg 0) param float 0.9 "Filter Pole"
block gain0 gain (*)

 Current Block: gain0 (block: gain)
Capsim[22]-> connect input add0
Capsim[23]-> connect add0 node0
Capsim[24]-> connect node0 gain0
Capsim[25]-> connect gain0 delay0
Capsim[26]-> connect delay0 add0
Capsim[27]-> connect node0 output
Capsim[28]-> display a

 parent HBlock UNIVERSE (universe.t)

arg 0 float 0.9 (0.900000) "Filter Pole"

block add0 add (*)

param int 1 "Enter number of samples to delay"
block delay0 delay (*)

block node0 node (*)

(arg 0) param float 0.9 "Filter Pole"
block gain0 gain (*)

connect input 0 add0 0
connect add0 0 node0 0

Appendix 83

connect delay0 0 add0 1
connect node0 0 gain0 0
connect node0 1 output 0
connect gain0 0 delay0 0

 Current Block: gain0 (block: gain)
Capsim[29]-> store filter
Capsim[30]-> run
 (Error 42) top level contains input/output terminals
 (Error 42) top level contains input/output terminals

Capsim[31]-> new
Capsim[32]-> load universe

 parent HBlock universe (universe.t)

arg -1 (none)

param int 20 "Enter number of samples"
block impulse0 impulse (*)

param file stdout "Name of output file"
param int 1 "Print output control (0/Off, 1/On)"
block prfile0 prfile (*)

connect impulse0 0 prfile0 0 data

 Current Block: impulse0 (block: impulse)
Capsim[40]-> to prfile0
 Current Block: prfile0 (block: prfile)
Capsim[41]-> HBlock filter
Capsim[42]-> chp
 Enter 1 new parameters:
0: Filter Pole
 param float 0.9 ?==>
Capsim[43]-> disconnect impulse0 prfile0
Capsim[44]-> display a

 parent HBlock universe (universe.t)

arg -1 (none)

param int 20 "Enter number of samples"
block impulse0 impulse (*)

param file stdout "Name of output file"
param int 1 "Print output control (0/Off, 1/On)"
block prfile0 prfile (*)

param float 0.9 "Filter Pole"
HBlock filter0 filter.t (*)

 Current Block: filter0 (HBlock: filter.t)

Appendix 84

Capsim[45]-> connect impulse0 filter0
Capsim[46]-> connect filter0 prfile0
Capsim[47]-> display a

 parent HBlock universe (universe.t)

arg -1 (none)

param int 20 "Enter number of samples"
block impulse0 impulse (*)

param file stdout "Name of output file"
param int 1 "Print output control (0/Off, 1/On)"
block prfile0 prfile (*)

param float 0.9 "Filter Pole"
HBlock filter0 filter.t (*)

connect impulse0 0 filter0 0
connect filter0 0 prfile0 0

 Current Block: filter0 (HBlock: filter.t)
Capsim[48]-> store test
Capsim[49]-> run

Output From Prfile 'prfile0'
filter0:0
1
0.9
0.81
0.729
0.6561
0.59049
0.531441
0.478297
0.430467
0.38742
0.348678
...
0.166772
0.150095
0.135085
Capsim[50]-> quit
%

