

Capsim Blocks Documentation

Silicon DSP Corporation

http://www.silicondsp.com

Note: Not all blocks available in text mode kernel.

Capsim Block Documentation 2

Copyright (c) 1989-2007 Silicon DSP Corporation
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the
section entitled "GNU Free Documentation License".

Some of the blocks documented in this reference were developed at:

Center for Communication and Signal Processing (CCSP)
Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, NC 27695-7914

and

Dept. of Electrical and Computer Engineering
University of Calfornia, Berkeley

Capsim Block Documentation 3

Table of Contents

Sources ___ 9

addnoise __ 10
arprocess ___ 11
bdata ___ 12
seqgen __ 14
gauss ___ 17
impulse ___ 18
pulse ___ 19
sine __ 21
rdfile ___ 23
rdmulti ___ 24
rdimage __ 25
rdbinimg __ 26
time __ 27
wave ___ 28
zero __ 30
xygen ___ 31

Encoders/Decoders ___ 33
linecode ___ 34
atod __ 35
dta ___ 36
mulaw. ___ 37
ds2 ___ 38
ds3 ___ 40
slice __ 42
v29encoder __ 43

Measurement Models ___ 46
ecount __ 47
jitter ___ 49
powmeter ___ 50
sdr ___ 51
stats __ 52

Capsim Block Documentation 4

Filters ___ 53
iirfil __ 54
firfil __ 58
fir ___ 65
convolve __ 67
lconv/fconv __ 69
dfiltfreq __ 71
casfil ___ 72
bpf ___ 73
lpf ___ 74
intdmp ___ 75
integrate __ 76
filtnyq/sqrnyq ___ 77
nl __ 78
hilbert __ 79

Probes ___ 80
eye ___ 81
more ___ 83
hist __ 84
plot __ 86
cxplot __ 88
multiplot __ 89
plt3d ___ 91
pltxyz __ 93
prfile ___ 95
spectrum __ 96
scatter __ 99
logican __ 101
image ___ 103
imgdisp __ 105
primage ___ 108
prbinimage ___ 109

Complex Blocks and Vector Processing (FFTs) _____________________________ 110
cmxfft ___ 111

Capsim Block Documentation 5

cmxifft __ 112
cmxfftfile __ 113
cxadd ___ 115
cxconj ___ 116
cxdelay __ 117
cxgain ___ 118
cxmag ___ 119
cxmakecx __ 120
cxmakereal ___ 121
cxmult ___ 122
cxnode ___ 123
cxphase __ 125
freqimp __ 126

Adaptive Filters ___ 127
predftf ___ 128
predlms __ 131
lms __ 134

Processing ___ 135
autoxcorr __ 137
autoeigen __ 139
divby2 ___ 141
ang ___ 142
scrambler __ 143
sqr __ 144
cubepoly ___ 145
limiter ___ 146
quot ___ 147
trig ___ 148

Decimation/Interpolation/Multiplexing ____________________________________ 150
cmux __ 151
resmpl ___ 153
mux ___ 155
demux ___ 156
toggle ___ 157

Capsim Block Documentation 6

hold ___ 158
stcode ___ 159

Building Blocks ___ 160
add ___ 161
delay __ 162
gain ___ 163
mixer __ 164
multiply ___ 165
node __ 166
sum ___ 167
operate __ 168

Synchronization __ 172
loopfilt __ 173
pump __ 175
vcm ___ 176
dco __ 177
zc (zero crossing detector) __ 179

Miscellaneous __ 180
null ___ 181
tee __ 182
skip ___ 183
threshold __ 184

Channel Models __ 186
transline ___ 187
doppler __ 195
fade ___ 196

Fixed Point/Floating Point Models _______________________________________ 198
fti ___ 199
itf ___ 200
fxadd __ 201
fxgain ___ 203
fxnode ___ 204
fxdelay __ 205
fxnl ___ 206

Capsim Block Documentation 7

pri __ 208
Logic Models ___ 209

and ___ 210
invert ___ 211
nand __ 212
nor __ 213
or ___ 214
xnor ___ 215
xor __ 216
jkff ___ 217
srff __ 219
srlatch ___ 221
tff ___ 223
dff __ 225
divider __ 227

Image Manipulation Blocks ___ 228
imgaddnoise __ 229
imgbreakup __ 230
imgbuild ___ 231
imgcalc __ 232
imgcolorsep __ 234
imgcxmag __ 235
imgcxtrl ___ 236
imgfft ___ 237
imgfilter ___ 238
imgfilter ___ 239
imggen __ 240
imghisteq __ 242
imginterp __ 243
imgmanip __ 244
imgmux __ 245
imgnonlinfilter __ 246
imgnonlinfilter __ 247
imgproc ___ 248

Capsim Block Documentation 8

imgrdbin ___ 249
imgrdfptiff ___ 250
imgrtcx __ 251
imgserin ___ 252
imgserout __ 253
imgshrink __ 254
imgsubimg ___ 255
imgwrfptiff ___ 256
imgwrtiff __ 257

Various ___ 258
expr ___ 259
invcust __ 260
inventory __ 262
rangen ___ 265

Capsim Block Documentation 9

Sources

Capsim Block Documentation 10

addnoise

Description

This block adds white gaussian noise to the input data stream.

Programmer: L. James Faber

Parameters:
(1) Sets the power of the added noise and should be >= 0.
 float var=1.0

(2)Sets a seed for the random number generator. Random
sequences can be unique and repeatable for each instance of this block.
 int seed = 333

Buffer:

Inputs:
Buffer 0: Input samples (float)
Outputs:
Buffer 0: Output samples (float).

Graphic

Σ

noise

0 0

Capsim Block Documentation 11

arprocess

Description

This block generates a selectable number of samples from an AR process, represented as
an IIR filter driven by Gaussian noise. The order of the process, and the weighting values
can be selected, via array parameter 2. Maximum order is 10 (since this is max array
size). Parameter 3 selects the variance of the gaussian driving noise.

This block supports auto-fanout.

Programmer: L.J. Faber
Date: April, 1988.

Parameters:
(1) Number of samples to generate:
 int samples = 100;
(2) Array of weights representing AR process. (Maximum 10) Ex. 3 0.1 -0.2 0.4
 array weights;
(3) The variance of the gaussian driving noise
 float variance = 1.0;

Buffer:

Inputs: Auto fanin.
Outputs: Auto fanout

Graphic

x x x

Σ

Σ

ω3 ω2 ω1

y(n)x(n) −
+

z -1
z -1 z -1

Capsim Block Documentation 12

bdata

Description

This function generates a random sequence of bits, which can be used to exercise a data
transmission system.

The pseudo-random sequence generator uses the polynomial x**10+x**3+1.

CONTROL PARAMETERS:

 num_of_samples = total number of samples to output.
 pace_rate = multiplies the number of samples received
 on pace input (if connected) to determine
 how many samples to output.
 samples_first_time = the number of samples to put out on the
 first call if pace input connected. It can
 be zero. negative values = 0.

CONTROL DESCRIPTION:

If the pace input is not connected:
 The num_of_samples parameter sets the maximum number of samples
 that the block will output. If num_of_samples < 0, an indefinite
 number of samples can be output.
 The block will output a maximum of NOSAMPLES on each call.
If the pace input is connected:
 The num_of_samples parameter sets the maximum number of samples
 that the block will output. If num_samples_out < 0, an infinite
 number of samples can be output.
 The pace input paces the number of output samples on each call.
 At each call of the block all samples are read from the pace input
 and a running total of how many there have been is kept.
 An output_target is computed at each pass = pace_input_total *
 pace_rate. If pace_rate < 0, the absolute value is used.

 On the first call:
 output = lesser of (samples_first_time, num_of_samples)
 On subsequent calls:
 output = lesser of (NOSAMPLES, output_target)
 output_target = samples_first_time +
 pace_rate * pace_input_total - to that point
 The total number of samples that will be output:
 samples_out_total = lesser of (num_of_samples,
 samples_first_time + pace_rate * pace_input_total)

Programmer: R. T. Wietelmann/G.H.Brand
Date: Oct 7, 1982
Modified for V2.0 by D.G.Messerschmitt March 11, 1985
Mod: ljfaber 12/87 add 'auto fanout'

Capsim Block Documentation 13

Parameters:

(1)Total length of the sequence to be generated.
 int length;
(2) Initialize shift reg for pseudo random sequence.
 int initialize = 12;
(3) Pace rate to determine how many samples to output
 float pace_rate = 1.0;
(4) Number of samples on the first call if paced
 int samples_first_time = 128;

Buffer:

Inputs:
Buffer 0: Pace input (optional) (float)

Outputs:
Auto fanout. Binary data.(float)

Graphic

0

0

Capsim Block Documentation 14

seqgen

Description

This function generates a sequence of bits, which can be used to exercise a data
transmission system. Any degree polynomial can be implemented as specified in a
parameter array.

For example to specify a polynomial x**0+x**3+1 use,

 array poly= 10 0 0 1 0 0 0 0 0 0 1

CONTROL PARAMETERS:

 num_of_samples = total number of samples to output.
 pace_rate = multiplies the number of samples received
 on pace input (if connected) to determine
 how many samples to output.
 samples_first_time = the number of samples to put out on the
 first call if pace input connected. It can
 be zero. negative values = 0.

CONTROL DESCRIPTION:

If the pace input is not connected:
 The num_of_samples parameter sets the maximum number of samples
 that the block will output. If num_of_samples < 0, an indefinite
 number of samples can be output.
 The block will output a maximum of NOSAMPLES on each call.
If the pace input is connected:
 The num_of_samples parameter sets the maximum number of samples
 that the block will output. If num_samples_out < 0, an infinite
 number of samples can be output.
 The pace input paces the number of output samples on each call.
 At each call of the block all samples are read from the pace input
 and a running total of how many there have been is kept.
 An output_target is computed at each pass = pace_input_total *
 pace_rate. If pace_rate < 0, the absolute value is used.

 On the first call:
 output = lesser of (samples_first_time, num_of_samples)
 On subsequent calls:
 output = lesser of (NOSAMPLES, output_target)
 output_target = samples_first_time +
 pace_rate * pace_input_total - to that point
 The total number of samples that will be output:
 samples_out_total = lesser of (num_of_samples,
 samples_first_time + pace_rate * pace_input_total)

Programmer: Ray Kassel

Capsim Block Documentation 15

Date: Nov. 10, 1990

Capsim Block Documentation 16

Parameters:

(1) Total length of the sequence to be generated.
 int length;

(2) Number of samples per chip.
 int num_per_chip = 8;

(3) Length of shift register.
 int shift_length = 10;

(4) Initialize shift reg for pseudo random sequence.
 int initialize = 12;

(5) Array of polynomial (0 or 1). Note length of array should equal parameter 3;
 array poly;

(6) Pace rate to determine how many samples to output
 float pace_rate = 1.0;

(7) Number of samples on the first call if paced
 int samples_first_time = 128;

Buffer:

Inputs:
Buffer 0: Pace input (optional) (float)

Outputs:
Auto fanout. Binary data.(float)

Graphic

0

0

Capsim Block Documentation 17

gauss

Description

This block generates gaussian samples. The first parameter, which defaults to
NOSAMPLES, tells how many total samples to send out. The second parameter is the
standard deviation which defaults to one. The third parameter is the random number seed.

For control parameters (pacing) see bdata for a description.

Parameters:

(1) Number of samples to generate.
 int length = 128;
(2) Standard deviation.
 float sigma = 1.0;
(3) Seed.
 int seed;
(4) Pace rate to determine how many samples to output
 float pace_rate = 1.0;
(5) Number of samples on the first call if paced
 int samples_first_time = 128;

Buffer:

Inputs:
Buffer 0: Pace input (optional) (float)

Outputs:
Buffer 0 : Gaussian samples.(float)

Graphic

0Gaussian
Source

0

Capsim Block Documentation 18

impulse

Description

This block sends out a unit sample, then a number of zero samples. The only parameter,
which defaults to NOSAMPLES, sets the total samples to send out.

Mod: ljfaber 12/87 add 'auto fanout'

Parameters:

(1) Enter number of samples.
 int length = 128;

Buffer:

Inputs:
None

Outputs:
Auto fanout

Graphic

0
Impulse

Capsim Block Documentation 19

pulse

Description

This block generates a pulse train with variable pulse width, period, DC offset and
amplitude.

Programmer: Sasan Ardalan
Date: Nov. 1987

Parameters:

(1) Number of samples to generate.
 int length = 128;
(2) Magnitude.
 float magnitude = 1.0;
(3) Period in samples.
 int np;
(4) Pulse width in samples.
 int nw;
(5) Initial delay in samples.
 int nd;
(6) DC value.
 float dcValue=0.0;
(7) Pace rate to determine how many samples to output
 float pace_rate = 1.0;
(8) Number of samples on the first call if paced
 int samples_first_time = 128;

Buffer:
Inputs:
Buffer 0: Pace input (optional) (float).

Outputs:
Buffer 0 : Samples (float).

Graphic

Capsim Block Documentation 20

T

t w

p

p(n)
0

Pulse

0

Capsim Block Documentation 21

sine

Description

This block generates a sinusoid (cosine for zero phase) . The The first parameter, which
defaults to NOSAMPLES (128), tells how many total samples to send out. The second
parameter is the magnitude which defaults to one. The third parameter is the sampling
frequency. The 4th parameter is the frequency The fifth parameter is the phase is degrees.

Programmer: Sasan Ardalan
Date: Nov. 1987

Parameters:
(1) Number of samples.
 int length = 128;
(2) Magnitude.
 float magnitude = 1.0;
(3) Sampling Rate.
 float fs = 8000.0;
(4) Frequency.
 float freq = 1000.0;
(5) Phase (degrees) .
 float phase=0.0;
(6) Pace rate to determine how many samples to output
 float pace_rate = 1.0;
(7) Number of samples on the first call if paced
 int samples_first_time = 128;

Buffer:

Inputs:
Buffer 0: Pace input (optional) (float)
Outputs:
Buffer 0: In phase (float)
Buffer 1: Quadrature (optional) (float)

Graphic

Capsim Block Documentation 22

0 I

Q
1

0

Capsim Block Documentation 23

rdfile

Description

This function performs the simple task of reading sample values in from a file, and then
placing them on it's output buffer. The file may have multiple sample values per line,
which can be integer or float.

An example use for this routine is to access a stored waveform as input to a simulation.
The parameters are:
 file_name = name of file to read from, defaults to "stdin"

Programmer: R. T. Wietelmann / D.G.Messerschmitt
Date: June 5, 1982
Modified for V2.0 by D.G. Messerschmitt March 7, 1985
Modified: July 10, 1985 by D.J.Hait
Modified: April, 1988 L.J.Faber: add "auto-fanout"

Parameters

(1) File name to read from.
 file file_name = "stdin";

Buffer:

Inputs:
None.
Outputs:
Auto fanout

Graphic

0Read from
a File.
rdfile

Capsim Block Documentation 24

rdmulti

Description

This function performs the task of reading multi column or single column but multiple
samples from a file, and then placing them on it's output buffers.The number of output
buffers determines the number of columns of the input data. The input data is read
regardless of its organization.

The file may have multiple sample values per line, which can be integer or float.

An example use for this routine is to access x,y, and z data from a file or to split odd
/even samples in a file to two buffers.

Programmer: Sasan Ardalan
Date: June 5, 1982

Parameters

(1) File name to read from.
 file file_name = "stdin";

Buffer:

Inputs:
None.
Outputs:
Each sample read is output to a buffer The next sample is output to the next buffer
modulo the number of buffers. Auto fanout

Graphic

Capsim Block Documentation 25

rdimage

Description

Read a ASCII image. On each visit a row is read from file and output. The width and
height are read from the file and should be on the first line.

Auto fan-out.

Programmer:Sasan Ardalan
Date: November 14, 1990

Parameters

(3) File that contains ascii image.
 file file_name = "test.img"

Buffer:

Inputs:
None.
Outputs:
Auto fanout

Graphic

Read binary Image Stored in file

h

w

Capsim Block Documentation 26

rdbinimg

Description

Read a binary image. On each visit a row is read from file and output. The image is
assumed to stored a byte to a pixel in binary format with no header information.

Auto fan-out.

Programmer:Sasan Ardalan
Date: November 14, 1990

Parameters

(1) Image width.
 int width=128;
(2) Image height
 int height=128;
(3) File that contains binary image.
 file file_name = "test.img
(4) Number of bytes to skip
 int skip=0;

Buffer:

Inputs:
None.
Outputs:
Auto fanout

Graphic

Read binary Image Stored in file

h

w

Capsim Block Documentation 27

time

Description

Function outputs the "time" to all connected output buffers. The time between samples
and the time before stopping are both input parameters:
 The time between samples defaults to 1.0 ("second")
 The time before stopping defaults to infinity

Using the stopping criterion is a convenient way of controlling the length of the
simulation to a certain time interval specified in seconds.

Programmer: D.G.Messerschmitt
Date: June 26, 1982
Modification for V2.0: Jan. 10, 1985
Mod: ljfaber 12/87 add 'auto fanout'

Parameters:
(1) The time between samples defaults to 1.0 ("second")
 float time_scale=1.0;
(2) The time before stopping defaults to infinity
 float time_stop = -1.0;

Buffer:

Inputs:
None.
Outputs:
Auto fanout.

Graphic

0
1

n

Time

Capsim Block Documentation 28

wave

Description

This block simulates a wave generator.

 wave_type wave description

 0 sine
 1 cosine
 2 square
 3 triangle
 4 sawtooth
Notes:
Pacer support.
Auto fan-out

Programmer: Prayson W. Pate
Modified by Sasan Ardalan Dec. 1990
Date: August 18, 1987

Parameters:
(1) Number of samples.
 int length = 128;
(2) wave_type to be generated
 int wave_type = 0;
(3) period of wave
 float period = 1.0;
(4) peak value of wave
 float peak = 1.0;
(5) Phase (degrees) .
 float phase=0.0;
(6) Pace rate to determine how many samples to output
 float pace_rate = 1.0;
(7) Number of samples on the first call if paced
 int samples_first_time = 128;

Buffer:
Inputs:
Pacer input (optional)
Outputs:
Auto fan-out (float)

Graphic

Capsim Block Documentation 29

Wave

0

Capsim Block Documentation 30

zero

Description

This block sends out a number of zero samples. The only parameter tells how many zero
samples to send out.

Mod: ljfaber 12/87 add 'auto fanout'

Parameters:
(1) Number of zeroes to output
 int length = 0;

Buffer:

Inputs:
None.
Outputs:
Auto fanout.

Graphic

0Zero x(n)

Capsim Block Documentation 31

xygen

Description

Total number of samples generated per X and Y is the matrix dimension squared. Think
of this block as generating x and y coordinates for a square matrix starting from the top
row moving down to the final row with x changing along the columns and y changing
along the row.

The results of this block can be used to form functions of x and y. F(x,y)

Generate x and y samples. x changes from minimum X to maximimum x in xsteps as y is
kept constant.
Y starts from minimum y to maximum y in y step increments.

Programmer: Sasan Ardalan
Date: April 1991

Parameters

(1) Matrix Dimension
 int matrixDim = 32;
(2) Minimum x
 float xMin=0.0;
(3) x step
 float xStep=1.0;
(4) Minimum y
 float yMin=0.0;
(5) y step
 float yStep=1.0;

Buffers

Outputs:
Buffer 0: x (float)
Buffer 1: y (float)

Graphic

0

1

x

yxygen

Capsim Block Documentation 32

Capsim Block Documentation 33

Encoders/Decoders

Capsim Block Documentation 34

linecode

Description

This block inputs 0/1 binary data and outputs various line codes.
Line codes are selectable by the first input parameter `code_type':
 0 - Binary (NRZ) (1 = +1, 0 = -1) (Default; 1 phase)
 1 - Biphase (Manchester) (1 = -1,+1; 0 = +1,-1) (2 phase)
 2 - 2B1Q (00 = -3, 01 = -1, 10 = +1, 11 = +3) (1 phase)
 3 - RZ-AMI (Alternate mark inversion)
The code output oversampling rate (samples per baud interval) is selected by the second
parameter `smplbd'. Note that multi-phase codes require oversampling rates which are
integer multiples of the number of phases! I/O buffers are float to be compatible with
most blocks.

Programmer: L.J. Faber
Date: 11/25/86

Parameters:

(1) Code type:0-Binary(NRZ),1-Biphase(Manchester),2-2B1Q,3-RZ-AM.
 int code_type = 0;
(2) Samples per baud.
 int smplbd = 8;

Buffer:

Inputs:
Buffer 0: Binary data (delay_max = 1) (float).

Outputs:
Buffer 0: Coded oversampled samples (float).
Buffer 1:Symbol data (not oversampled) (float).

Graphic

0 0x(n) y(n)Line Coder
NRZ, Manchester,
2B1Q, RZ-AM,
AMI

1

N

Coded symbols

High rate

 buad rate

Capsim Block Documentation 35

atod

Description

This block simulates a uniform analog to digital converter.

Programmer: Sasan Ardalan
Date: February 17, 1989

Parameters:
The number of bits (e.g. 13 bits)
 int bits =13
The Maximum input range (e.g. +- 5 volts)
 float maxLevel = 2.0;

Buffer:

Inputs:
 Buffer 0->Input samples to be quantized. (float)
Outputs:
 Buffer 0 -> Quantized samples (float).
 Buffer 1-> Quantization error (float). Optional.

Graphic

0 0

1

x(n)
y(n)

e(n)

Capsim Block Documentation 36

dta

Description

This block simulates a digital to analog converter.

Programmer: Sasan Ardalan
Date: February 17, 1989

Parameters:

(1) The number of bits (e.g. 13 bits)
 int bits = 13;
(2) The Maximum output range (e.g. +- 5 volts)
 float maxLevel = 2.0;

Buffer:

Inputs:
Buffer 0: Digital Samples (float).

Outputs:
Buffer 0 : Analog Samples (float).

Graphic

0 0x(n)
y(n)

Digital to
Analog
Converter

Capsim Block Documentation 37

mulaw.

Description

This block implements a mulaw quantizer.
Programmer: Sasan Ardalan

Parameters:
(1) Compress or Expand Flag. Compress=0, Expand=1.
 int compExFlag = 0

Buffer:

Inputs: input samples (float).
Outputs: output samples (float).

Graphic

Mulaw
Compressor
Expander

0 0x(n) y(n)

Capsim Block Documentation 38

ds2

Description

This block is a self-contained second order delta sigma modulator.
Ouput 0 is the output of the circuit. Output 1 is the input to the comparator.

-Parameter one: the gain of the first integrator
-Parameter two: the gain of the second integrator
-Parameter three: the value for delta

Programmer: John T. Stonick
Date: February 1989

Parameters
(1) The gain of the first integrator
 float g1=1.0;
(2) The gain of the second integrator
 float g2=1.0;
(3) Binary Quantizer Level
 float delta=1.0;

Buffers

inputs: Buffer 0 in (float)

outputs: Buffer0 error (float)
 Buffer 1 delta sigma bit stream (float)

Graphic

Capsim Block Documentation 39

g1 Σ g2Σ
Δ

Δ-
0

0

1

- -

Capsim Block Documentation 40

ds3

Description

This block is a self-contained third order delta sigma modulator.
Ouput 0 is the output of the circuit. Output 1 is the input to the comparator.

-Parameter one: the gain of the first integrator
-Parameter two: the gain of the second integrator
-Parameter two: the gain of the third integrator
-Parameter three: the value for delta

Programmer: John T. Stonick
Date: February 1989

Parameters
(1) The gain of the first integrator
 float g1=1.0;
(2) The gain of the second integrator
 float g2=1.0;
(3) The gain of the second integrator
 float g3=1.0;
(4) Binary Quantizer Level
 float delta=1.0;

Buffers

inputs: Buffer 0 in (float)

outputs: Buffer0 error (float)
 Buffer 1 delta sigma bit stream (float)

Graphic

Capsim Block Documentation 41

g1 Σ g3Σ
Δ

Δ-
0

0

1

- -

Σ g2

-

Capsim Block Documentation 42

slice

Description

This block simulates a decision element for a data receiver. It compares the incoming
signal to a set of thresholds, which are COMPUTED from the user-specified set of output
levels. Thresholds are always exactly HALF way between specified output levels.

Output levels are specified via a topology file parameter array. Parameter arrays are float,
so there are no restrictions on specified output values. Only 10 levels are allowed, and
must be listed in ascending magnitude order.

 Examples-- binary decision (threshold = 0.0)
 param array 2 -1.0 1.0

 quaternary decision (thresholds -2/0/2)
 param array 4 -3. -1. 1. 3.

The number of output channels is determined at run-time (auto-fanout).

Programmer: L.J. Faber
Date: April, 1988

Parameters:

(1) Array of decision levels.
 array level;

Buffer:

Inputs:
Buffer 0: Input signal.
Outputs:
Auto fanout.

Graphic

Slicer 0 0

Capsim Block Documentation 43

v29encoder

Description

This block inputs data and ouputs the coordinates of the CCITT v.29 encoder
constellations. Output0 corresponds to the real value and Output1 corresponds to the
coordinates of the imaginary.

Programmer: A. S. Sadri
Date: Aug. 2, 1990

Parameters

 None

Buffer:

Inputs:
Buffer0 : data (float)

Outputs:

Buffer 0: inPhase (float)
Buffer 1: quadPhase (float)

Graphic

Capsim Block Documentation 44

v29enc

0

1
0 I

Q

Capsim Block Documentation 45

Capsim Block Documentation 46

Measurement Models

Capsim Block Documentation 47

ecount

Description

"error counter"

This block compares two data streams for "equality". (Since the input streams are
floating point, a guard band is used.) An output stream is created, with 'zero' output for
equality, and 'one' if there is a difference. (Note: the output stream is optional--if no
block is connected to the output, there is no output.) Param. 1 selects an initial number of
samples to be ignored for the final error tally (used during training sequences); default
zero. Param 2 sets an index, after which a message is printed to stderr for each error. It
defaults to "infinity", i.e. no error messages. This block prints a final message to stderr
giving the error rate (errors/smpl), disregarding the initial ignored samples.

Programmer: L.J. Faber
Date: Dec 1987

Parameters:

(1) Number of initial samples to ignore.
 int ignore = 0;
(2) Number of samples after which errors are reported to stdout.
 int err_msg = 30000;

Buffer:

Inputs:
Buffer0 : w (float)
Buffer1: x (float)

Outputs:
If output connected then it outputs results (float)..

Graphic

0 0w(n) y(n)Error
Counter

1

x(n)

Capsim Block Documentation 48

Capsim Block Documentation 49

jitter

Description

This block generates the jitter sequence from a timing wave. A reference square wave
clock is used. The jitter is in degrees.

Written by : Sasan Ardalan, October 1989.

Parameters:

(1) Trigger edge: 1= Rising, 0 = Falling.
 int edge = 1;

(2) Output Rate: Synchronous or One per cycle.
 int sync=1;

Buffer:

Inputs:
Buffer 0: Timing wave (float).
Buffer 1: Reference Clock (Square wave zero mean)(float).

Outputs:
Buffer 0: Jitter sequence in degrees. (float)

Jitter
0 0

1

Capsim Block Documentation 50

powmeter

Description

This block is an averaging logarithmic power meter, which can be connected either in-
line or terminating. If an output is connected, input 0 is passed through unchanged. If no
output is connected, the signal is absorbed (like sink).

The block computes 10*log10(square) of the signal at input 0, and (optionally) compares
it to another signal at input 1. If no signal is connected to input 1, power is referenced to
unity. This block ultimately prints an ASCII file with the power results.

Parameter 1: (file) name of output file; default => powfile
 2: (int) number of samples to average; default => 1

Programmer: L.J. Faber
Date: May 1988
Modified: 9/88 output to stdout if desired

Parameters:

(1) Name of file to store results.
 file powfile_name = "powfile.dat";
(2) Number of samples to average.
 int N = 1;

Buffer:

Inputs:
Buffer 0: Samples (float).
Outputs:
Auto termination on Buffer 0 if no output connected.

Graphic

0 0x(n) y(n)Power
Meter

Capsim Block Documentation 51

sdr

Description

This block computes the signal to total harmonic and noise ratio.

Programmer: Sasan Ardalan
Date: 2/16/89
Modified: L.J. Faber 1/3/89. Add flow through; general cleanup.

Parameters:
(1) Number of buffer points in each plot.
 int npts ;
(2) Points to skip before first plot.
 int skip ;
(3) File to store sdr results.
 file sdrRes;
(4) Window flag (0=Rect 1= Hamming).
 int wind=1;

Buffer:

Inputs:
Buffer 0 : Input samples.(float)
Outputs:
Optional feed-through of input channels.

Graphic

Signal to
Distortion

0 0SDR

Capsim Block Documentation 52

stats

Description

This block calculates the statistics of the incoming signal. The signal variance, mean,
standard deviation, and minimum and maximum values are computed.The parameter is a
file name for storage of the results. The results are also dumped to the screen.

Programmer: Prayson W. Pate
Date: December 8, 1987
Modified: February 22, 1987
 April 1988
 May 1988 ljfaber: add 'flow-thru' capability
 : add signal identifier

Parameters:

(1) Number of points to skip.
 int skip=0;
(2) File to store results.
 file stat_file = "dummy_name";

Buffer:

Inputs:
Buffer 0: Single to be analyzed.(float)
Outputs:
Buffer 0: optional: terminate signal or flow through.(float)

Graphic

Statistics
0 0

Capsim Block Documentation 53

Filters

Capsim Block Documentation 54

iirfil
Description
This block designs and simulates IIR low pass, high pass, band pass, and band stop
filters. Butterworth, Chebyshev, and Elliptic filters are supported.

During the design phase, three files are created:
(1) tmp.dat stores the filter design information including specs and results.
(2) tmp.pz stores the poles and zeroes and the normalization constant.
(3) tmp.cas stores the cascade coefficients and the normalization constant.
These files are overwritten when more than one instance of the block is used.

Parameters:

(1) Filter Type:
 1=Low Pass,
 2=High Pass
 3=Band Pass
 4=Band Stop
 int filterType=1;

(2) Design Type:
 1=Butterworth
 2=Chebyshev
 3=Elliptic
 int designType=3;

(3) Sampling Frequency, Hz
 float fs=32000.0;

(4) Passband Frequency, Hz (Low pass / High pass filters only).
 float fpb=3400.0;

(5) Stopband Freqency, Hz (Low pass/High pass filters only)
 float fsb=4400.0;

(6) Lower Passband Frequency (Band pass/Band stop filters only)
 float fpl=200.0;

(7) Upper Passband Frequency (Band pass/Band stop filters only)
 float fpu=3400.0;

(8) Lower Stopband Frequency (Band pass/Band stop filters only)
 float fsl = 10.0;

Capsim Block Documentation 55

(9) Upper Stopband Frequency (Band pass/Band stop filters only)
 float fsu = 4400;
(10) Filter name (note filter design parameters are stored name.*)
 file name=tmp;
Note: Default values for low pass and band pass filters.
Buffer:

Inputs:
Buffer 0: Samples to be filtered (float).

Outputs:
Buffer 0: Filtered samples. (float).

Graphic

IIR
Filter

0 0

Capsim Block Documentation 56

Filter Specifications:

fpb fsb

Passband Freq. Stopband Freq.

Ripple dB

Loss, dB

Stop Band Attenuation, dB

Frequency

Low Pass Filter

fs/2

fpbfsb

Passband Freq.
Stopband Freq.

Ripple dB

Loss, dB

Stop Band Attenuation, dB

Frequency

High Pass Filter

fs/2

Capsim Block Documentation 57

Stopband
Attenuation
dB

Stopband
Attenuation
dB

Passband
Ripple, dB

Lower StopBand
Freq. Upper Stopband

Freq.

Lower Passband
Freq.

Upper Passband
Freq.

fsufpufplfsl
Frequency

Band Pass Filter

fs/2

Stopband
Attenuation
dB

Passband
Ripple, dB

Lower StopBand
Freq.

Upper Stopband
Freq.

Lower Passband
Freq.

Upper Passband
Freq.

fsufpu fplfsl
Frequency

Loss, dB
Band Stop Filter

fs/2

Capsim Block Documentation 58

firfil

Description
This block designs and simulates FIR low pass, high pass, band pass, and band stop
filters.
The design is based on the windowing method. The following windows are supported:
(1) Rectangular, (2) Triangular, (3) Hamming, (4) Generalized Hamming, (5) Hanning,
(6) Kaiser, (7) Chebyshev, (8) Parzen.

During the design phase, two files are created:
(1) tmp.spec stores the filter design information including specs and results.
(2) tmp.tap stores the tap weights for the FIR filter.
These files are overwritten when more than one instance of the block is used.

Parameters:

(1) Filter Type:
 1=Low Pass,
 2=High Pass
 3=Band Pass
 4=Band Stop
 int filterType=1;

(2) Window Type:
 1=Rectangular
 2=Triangular
 3=Hamming
 4=Generalized Hamming
 5=Hanning
 6=Kaiser
 7=Dolph Chebyshev
 8=Parzen
 int windowType=2;

(3) Number of Taps (set to zero if not specified for Chebyshev window, program will
compute based on ripple and transition width).
 int ntaps=128;

(4) Cutoff Frequency, normalized. 0=< fc =< 0.5 (Low pass/High pass filters only).
 float fc=0.25;

(5) Lower Cutoff Frequency, 0 =< fl =< 0.5 (Band pass/Band Stop filters only)
 float fl=0.25;

Capsim Block Documentation 59

(6) Upper Cutoff Frequency, 0 =< fh =< 0.5 (Band pass/Band Stop filters only)
 float fh=0.35;

(7) Alpha for Generalized Hamming Window 0=< alpha =< 1.0.
 float alpha=0.5

(8) Ripple, dB for Chebyshev Window(set to zero if not specified, program will use
transition and number of taps).
 float dbripple=0.1;

(9) Transition width (normalized) for Chebyshev Window 0<=twidth <= 0.5 (set to zero
if not specified, program will use ripple and number of taps).
 float twidth=0.05;

(10) Stop band attenuation, dB for Kaiser Window(b computed from attenuation).
 float att=40;

Buffer:

Inputs:
Buffer 0: Samples to be filtered (float).

Outputs:
Buffer 0: Filtered samples. (float).

Graphic

FIR
Filter

0 0

Capsim Block Documentation 60

Detailed Description:

The following is adapted from, L.R. Rabiner, C. A. McGonegal, and D. Paul, "FIR
Windowed FIlter Design Program - WINDOW," Programs for Digital Signla
Processing, IEEE Press, New York, 1979.

Purpose
 This block is used to design and implement FIR digital filters using the window
method. The program can design lowpass, bandpass, bandstop, and high pass filters for
both even and odd values of N, (the impulse response duration in samples), using either a
rectangular, a triangular, a Hamming, a Hanning, a Chebyshev, or a Kaiser window.

Method

 This program uses the well known method of window design for FIR digital
filters. If we denote the N-point windows as w(n), for 0 ≤ n ≤ N-1, and we denote the
impulse response of the ideal digital filter (obtained as the inverse Fourier transform of
the ideal frequency response filter) as h(n),-∞ < n < ∞, then the windowed filter is given
as

h(n) = w(n)h(n) 0 ≤ n ≤ N-1

=0 otherwise

In the discussion above it is assumed that h(n) incorporates an ideal delay of (N-1)/2
samples, and that w(n) is symmetric around the point (N-1)/2.

From the filter specfications the sequences h(n) and w(n) of Eq. (1) are computed, and
the windowed filter is obtained as the final output.

Windows

Capsim Block Documentation 61

Frequency
fc Frequencyf1 f2

|H(f)|
|H(f)|

(a) Filter Specification. (b) Actual smearing due to window

Rectangular Window

wR(n) = { 1.0 -(N
2

) ≤ n ≤ N/2 -1 N even
 1.0 -(N-1

2
) ≤ n ≤ N-1

2
 N odd

Triangular Window

wTriangle(n) = { 1-|2n+1|/N -(N
2

) ≤ n ≤ (N/2 -1) N even

1-|2n|/(N+1) -(N-1
2

) ≤ n ≤ N-1
2

 N odd

Hanning Window

wHann(n) = {1
2

[1 + cos(2π(2n+1)
2(N+1)

)] -(N/2) ≤ n ≤ (N/2-1) N even

1
2

[1 + cos(2πn
N+1

)] -(N-1)/2 ≤ n ≤ (N-1)/2 N odd

Generalized Hamming Window

wH(n) = {α + (1-α)cos(2π(2n+1)
2(N-1)

) -(N/2)≤ n ≤(N/2-1) N even

 α + (1-α)cos(2πn
N-1

) -(N-1
2

) ≤ n ≤ N-1
2

 N odd

Kaiser Window

Capsim Block Documentation 62

wK(n) = {

I0(β 1 - [4(n+1/2)2

(N-1)2
]

I0(β)
 -(N

2
) ≤ n ≤ N

2
 -1 N even

I0(β 1 - [4n2

(N-1)2
]

I0(β)
 -(N-1

2
) ≤ n ≤ N-1

2
 N odd

Capsim Block Documentation 63

Filter Types

Frequency
fc

|H(f)|

Ideal Low Pass Filter

0.5

1

0

0

Frequencyfc

|H(f)|
Ideal High Pass Filter

0.5

1

0

0

Definition of normalized cutoff frequency for low pass and high pass filters.

Frequency
fl

|H(f)|

fh

Ideal Band-Pass Filter

0.5

1

0

0

Capsim Block Documentation 64

Frequency
fl

|H(f)|

fh

Ideal Band-Stop Filter

0.5

1

0

0

Definition of normalized cutoff frequencies, FL and FH for bandpass and bandstop
filters.

Chebyshev Window

 w(n) is obtained as the inverse DFT of the Chebyshev polynomial, evaluated at N
equally spaced frequencies arouund the unit circle. The parameters of the Chebyshev
window are the ripple, dp, the filter length, N, and the normalized transition width, DF.
The Figure below shows a plot of the frequency respomnse of a Chebyshev window
illustrating how dp and DF are measured.

Δ F

0

0
Frequency

0.5

δp

δp

1+

|H(f)|

Definition of Chebyshev window parameters in the frequency domain.

Only 2 of the 3 parameters N, dp and ΔF can be independently specified. The block
computes the 3rd parameter based on the other 2 parameters.

Capsim Block Documentation 65

fir

Description

This block outputs a weighted sum of delayed input data.
Parameter one is an array for filter weights, 10 maximum.
Any number of these blocks can be cascaded to implement longer filters.
Connect them like this:
 CASCADE

input
0
1

0 outputFIR FIR
0
1

(Input and output buffers are assigned automatically.)
To implement an IIR filter with an fir in a feedback loop,
include a unit delay:
 IIR

Σ

FIR delay

Programmer: L.J. Faber
Date: April 21, 1988.

Parameters:
(1) Array of FIR weights.
 array weights;

Buffer:

Inputs:
Buffer 0: Samples (float).
Outputs:
Buffer 0: Filtered samples (float).
Buffer 1: Optional, delayed samples for cascading (float).

Graphic

Capsim Block Documentation 66

x x x

Σ

ω0 ω1 ω2

y(n)

x(n)
z -1

z -1 z -1

x
ω3

0

0

1

Capsim Block Documentation 67

convolve

Description

This block convolves the input samples with the impulse response (finite duration, FIR)
given in a file.

y(n) = ∑
i=0

N-1
 x(n-i)*wi

where wi i=0,...,N-1 are the impulse response samples. N is the length of the impulse
response.

Programmer: Adali Tulay
Date: September 23, 1988

Parameters:

(1) File with impulse response.
 file filename="imp.dat";
(2) Number of samples in impulse response.
 int N ;

Buffer:

Inputs:
Buffer 0 : Input samples to convolve.(float)

Outputs:
Buffer1: Convolved output samples. (float)

Graphic

Capsim Block Documentation 68

x x x

Σ

ω0 ω1 ω2

y(n)

x(n)
z -1

z -1 z -1

x
ω3

0

0

Capsim Block Documentation 69

lconv/fconv

Description

"Linear Convolution":
This block convolves its input signal with an impulse response to generate the output
signal.
Param. 1 - (int) impl: length of impulse response in samples.
 2 - (file) impf_name: ASCII file which holds impulse response.
 3 - (int) fftexp: log2(fft length).

Convolution is performed by the fft overlap-save method (described in Oppenheim &
Schafer, Digital Signal Processing, pp. 113).

The FFT length must be greater than the impulse response length. For efficiency, it
should probably be more than twice as long.

Programmer: M. R. Civanlar
Date: November 16, 1986
Modified: ljfaber, Dec86, Feb87
Modified: 6/88 ljfaber update comments, efficiency

Parameters:

(1) Length of impulse response in samples.
 int impl;
(2) ASCII file which holds impulse response.
 file impf_name = "imp.dat";
(3) log2(fft length).
 int fftexp;

Buffer:

Inputs:
Buffer 0: Samples to be filtered.

Outputs:
Buffer 0: Filtered samples.

Graphic

Capsim Block Documentation 70

Convolution
Over Lap
Save Method

0 0x(n) y(n)

Capsim Block Documentation 71

dfiltfreq

Description

"data filter, frequency points" This block performs general filtering for a data
transmission channel, given frequency response data. The frequency data is contained in
a file named by the first parameter. The file is assumed to be stored in symmetric, rfft
format! The second parameter specifies the sampling frequency, "f sub s", expressed as a
multiple of the system baud rate, eg. "8". The third parameter specifies the number of
freq. data points. The input data oversampling rate (relative to the baud rate) is specified
by the fourth input parameter `smplbd' (integer). The fifth parameter `fxp' specifies the
length of the FFT to be used, with 2^fxp the FFT length. The channel impulse response is
truncated at 16 baud intervals. This implies that FFT length must be > (16*smplbld) !

Programmer: L.J. Faber
Date: Feb. 1987

Parameters:

(1) File containing channel frequency response data (complex compact format).
 file freq_fname = "freq.dat"
(2) Sampling rate as a multiple of baud rate.
 float fmax = 8.;
(3) The number of frequency data points.
 int fpts = 1024;
(4) Input data oversampling ratio relative to baud rate.
 int smplbd = 8;
(5) Length of FFT to be used. FFT length = 2^fxp.
 int fxp = 9;

Buffer:

Inputs:
Buffer 0: Samples into channel. (float)

Outputs:
Buffer 0: Channel response samples. (float)

Graphic

0 0x(n)
y(n)

Channel
Frequency
Response

Capsim Block Documentation 72

casfil

Description

Block implements a cascade form IIR digital filter.
Parameter: (file) File with the filter coefficients and parameters
The inputs from the file are as follows;
 ns: Number of sections
 zc1[i] zc2[i] i=1 to ns the numerator coefficients
 pc1[i] pc2[i] i=1 to ns the denominator coefficients
 in the Z-domain.
 Normalization factor.
For each section:
y(n) = x(n) + zc1*x(n-1) + zc2*x(n-2) - pc1*y(n-1) -pc2*y(n-2)

Programmer: Tulay Adali
Modified: Sasan Ardalan
Date: October 15, 1988

Parameters:
(1) File containing coefficients and normalization factor:

 file filename="tmp.cas";

Buffer:

Inputs: Samples to be filtered (float).
Outputs: Filtered samples (float).

Graphic

1+zc1[1]*z + zc2[1]*z

pc1[1]*z +pc2[1]*z

-1 -2

-1 -2

1+zc1[M]*z + zc2[M]*z

pc1[M]*z +pc2[M]*z

-1 -2

-1 -2
. . . w

y(n)x(n)

Capsim Block Documentation 73

bpf

Description

Block implements a simple band pass IIR digital filter. Zero response at DC and fs/2.

Programmer: Tulay ADALI
Date: November 23, 1988

Parameters:

(1) fs: sampling frequency
 float fs
(2) freq: resonant frequency
 float freq
(3) ro: magnitude of the pole (less than one, for stability) (Q increases when magnitude
of the pole approaches to the unit circle, i.e. when ro is close to one.)
 float ro

Buffer:

Inputs:
Buffer0-> input samples (float)
Outputs:
Buffer0-> output samples (float)

Graphic

0
0x(n) y(n)

freq

Capsim Block Documentation 74

lpf

Description

This block implements an IIR filter as a recursive equation:
 y(n)=pole*y(n-1)+(1-pole)*x(n)
This implementation produces unity gain at DC.

Programmer: John T. Stonick

Parameters:

(1) Filter pole <= 1
 float pole=.9;

Buffer:

Inputs:
Buffer 0: Samples to be filtered.
Outputs:
Buffer 0: Filtered samples.
delay_max=2;

Graphic

0 0x(n) y(n)1

Single Pole Low Pass
Filter

f

Capsim Block Documentation 75

intdmp

Description

This block performs an integrate and dump. Therefore, the sampling rate is reduced by
the number of samples per symbol.

parameters
 (1) Integration time (symbol time in samples)
 int dmpTime=8

Buffer:

Inputs:
Buffer 0 : Samples.(float)

Outputs:
Buffer 0: Filtered samples.(float) Decimated by integration time.

Graphic

0 0

Ν

Capsim Block Documentation 76

integrate

This block implements a leaky integrator
 recursive equation:
y(n)=factor*y(n-1)+x(n)
set factor =1 to integrate.

parameters
 (1) leakage factor <= 1.0
 float factor= 1.0;

Buffers:

Inputs:
Buffer 0 : Samples.(float)

Outputs:
delay_max=2;
Buffer 0: Integrated samples.(float)

Graphic

x 0 0 y

Capsim Block Documentation 77

filtnyq/sqrnyq

Description

This block performs Nyquist pulse shaping for a baseband transmitter. See Carlson,
Communications Systems, page 381, equation 17b. The Nyquist criterion in the
frequency domain is to have an amplitude rolloff which is symmetric about Fb/2 (half
baud frequency). First, a frequency-domain amplitude response is created using a raised
cosine shape. This computation is affected by:
Param: 1 - (int) smplbd: samples per baud interval. default=>8
 2 - (int) expfft: 2^expfft = fft length to use. default=>8
 3 - (float) beta: filter rolloff factor, 0<beta<=.5 default=>.5
The amplitude response is changed to impulse response via inverse fft. The impulse
response is made causal by right shifting (filter delay), and is time limited to
"IMPBAUD" baud intervals (set by definition). (This filter will cause a delay of
IMPBAUD/2 baud intervals.) Finally, the impulse response is transformed back to a
frequency response, which is used in subsequent linear convolution with the input, which
is implemented by the Fast Fourier Transform overlap-save method.

The fft length must be greater than the impulse response length; for efficiency, a factor of
two or more in length is desirable. This implies that 2^expfft > smplbd * IMPBAUD.
Nyquist shaping has no meaning if smplbd = 1; this implies that each sample would go
through the filter unchanged!

Programmer: L.J. Faber
Date: Jan. 14, 1987

Parameters:
(1) Samples per baud interval.
 int smplbd = 8;
(2) 2^expfft = fft length to use.
 int expfft = 8;
(3) Filter rolloff factor, 0<beta<=.5.
 float beta = .5;

Buffer:
Inputs:
Buffer 0 : Samples.(float)
Outputs:
Buffer 0: Filtered samples.(float)

Graphic

Capsim Block Documentation 78

t

f
1/2T-1/2T 1/T-1/T

T-T

0 0x(n) y(n)

Nyquist Filter

nl

Description

Normalized Lattice Filter

Programmer: Sasan H Ardalan
Date: August 22,1987

Parameters:
(1) File with normalized lattice parameters.
 file file_name = "stdin";

Buffer:

Inputs:
Buffer 0: Input samples to be filtered.(float)
Outputs:
Buffer 0: Filtered samples.(float)

Errors

Graphic

Capsim Block Documentation 79

hilbert

Description

"Discrete Hilbert Transform":
Reference:
A.V. Oppenheim amd R. W. Schafer,"Digital Signal Processing",pp 360-363,Prentice-
Hall,1974 A Blackman window is used in the design. It then uses the overlap save
method for fast convolution to model the hilbert transform impulse response.

Notes:
(1) The larger the length, the better the approximation. However, the simulation
efficiency suffers considerably.
(2) This block introduces a delay of half the transform length.

Convolution is performed by the fft overlap-save method (described in Oppenheim &
Schafer, Digital Signal Processing, pp. 113).

The FFT length must be greater than the impulse response length.
For efficiency, it should probably be more than twice as long.

Programmer: Sasan H. Ardalan, Overlap-save method by M. R. Civanlar
Date: July 26, 1990
Modified by Ray Kassel.

Parameters

 (1) length of Hilbert transform impulse response
 int impl =17;

 (2) bandwidth (0 < BW <= 0.5)
 float fbw = 0.5;

 (3) log2(fft length)
 int fftexp = 8;

Buffer:

Inputs:
Buffer 0: Input samples to be filtered.(float)
Outputs:
Buffer 0: Filtered samples.(float)

Capsim Block Documentation 80

Probes

Capsim Block Documentation 81

eye

Description

This routine generates the plot of an eye diagram, which is used in the analysis of data
communications channels. The input data should be a symmetric, sampled analog
waveform. The program overlays 200 baud intervals, starting from baud 10. The user
must enter the (integer) oversampling rate (samples per baud); any integer rate up to 32
is supported. The user also enters the baud sampling phase. This phase (float) defines
the sampling time (center of the eye) relative to the input data index 0. The eye diagram
is always displayed from -.75 to .75 baud intervals. (This blocks accepts only one input
buffer).

Note: If capsim is run in non graphic mode, this block will produce a file called
title.eye where title is set by the title parameter.

Programmer: Jim Faber,R.A. Nobakht
Date: 9/16/87
Modified: ljfaber 1/3/89. add optional data flow-through.parameters

Parameters:

(1) Number of samples to collect for eye diagram (dynamic mode).
 int numSamples = 200;
(2) Samples per baud interval.
 int smplbd = 8;
(3) Baud sampling phase
 float phase = 0.0;
(4) Samples to skip.
 int skip = 0;
(5) Control: 1=On, 0 = Off..
 int control= 1;
(4) Title.
 file title= "eyeDiagram";
(5) 0=Static,1=Dynamic
 int mode = 0;

Buffer:
Inputs:
Buffer 0: Samples. (float)

Outputs:
Buffer 0: Feed Through.

Capsim Block Documentation 82

Graphic

Eye Diagram0 0

Capsim Block Documentation 83

more

Description

Function prints samples from an arbitrary number of input buffers to the terminal output
using the "more" command (one sample from each input is printed on each line)

This routine does not print the time axis; to obtain the time axis, the user should connect
the block time() to input #0

Programmer: D.G.Messerschmitt
Date: May 6, 1986

Parameters:

Buffer:

Inputs:
Auto fanin.
Outputs:
None.

Graphic

more
0 0

Capsim Block Documentation 84

hist

Description

This program computes a histogram of the received data. For a large no. of data points
this distribution should approach the probability dist. of the signal . Any samples outside
the range are put in the appropriate outer-most bin.

Note: If capsim is run in non graphic mode, this block will produce a file called
title.his where title is set by the title parameter.

Programmer: John T. Stonick
Date: January 1988
Modified: March 29, 1988

Parameters:
(1) Starting point of left most bin.
 float start = 0.0;
(2) Ending point of right most bin.
 float stop = 1.0;
(3) Number of bins.
 int no_of_bins = 10;
(4) File name for output.
 file file_spec = "none";
(5) Number of points to collect.
 int npts=1000;
(6) X axis label.
 file x_axis = "Bins ";
(7) Y axis label.
 file x_axis = "Histogram";
(8) Plot Style: 1=Line,2=Points,5=Bar Chart.
 int plotStyleParam=5;
(9) Control: 1=On, 0=Off
 int control=1;
(10) Buffer Type: 0= float, 1=image
 int bufferType=0;

Buffer:

Inputs:
Buffer 0: Samples. (float)

Outputs:
Feed Through

Graphic

Capsim Block Documentation 85

Histogram
0 0

Capsim Block Documentation 86

plot

Description

This routine will produce a set of plots from an arbitrary number of input channels.
Optionally, the input channel data can 'flow through' to the correspondingly numbered
output channel. This is useful if this block is to be placed in line in a simulation (e.g.
probe).

Note: If capsim is run in non graphic mode, this block will produce a file called
title.tim where title is set by the title parameter.

Programmer: Sasan Ardalan
Date: 8/16/87
Modified: L.J. Faber 1/3/89. Add flow through; general cleanup.

Parameters:
(1) Number of points in each plot (dynamic window size).
 int npts = 100;
(2) Points to skip before first plot.
 int skip = 0;
(3) Plot title.
 file title = "PLOT";
(4) X-Axis label.
 file x_axis = "X";
(5) Y-Axis label.
 file y_axis = "Y";
(6) Plot Style: 1=Line,2=Points,5=Bar Chart.
 int plotStyleParam=1;
(7) Control : 1= On, 0 = Off.
 int control= 1;

(8) 0=Static,1=Dynamic
 int mode = 0;
(9) Sampling Rate
 int samplingRate = 1;

Buffer:

Inputs:
Auto fanin.
Outputs:
Feed Through

Capsim Block Documentation 87

Graphic

Plot0

1

2

0

1

2

Capsim Block Documentation 88

cxplot

Description

 inputs: complex

 outputs: (optional feed-through of input channels)

This routine will produce a plot with the real and imaginary multiple with legends
Or, it will produce two plots, one for the magnitude and one for the phase.
Optionally, the input channel data can 'flow through' to the
correspondingly numbered output channel. This is useful if this block is to be placed in
line in a simulation (e.g. probe).

Programmer: Sasan H. Ardalan
Date: August 6, 1991

Parameters

(1) Number of points in each plot
 int npts = 128;
(2) Points to skip before first plot
 int skip = 0;
(3) Plot title
 file title = "ComplexPlot";
(4) X-Axis label
 file x_axis = "X";
(5) Y-Axis label
 file y_axis = "Y";
(6) Plot Style: 1=Color,2=Dashed,1=Same
 int plotStyleParam=1;
(7) 0=Real/Imaginary 1=Mag/Phase Plot
 int plotType=0;
(8) Control: 1=On, 0=Off
 int control=1;

Buffers

Input: Buffer 0 x (complex)

Output: Buffer 0 (Optional Feed Thru) (complex)

Capsim Block Documentation 89

multiplot

Description

Create a plot with overlayed curves where each curve is an input buffer. Also plot
legends.

 inputs: (arbitrary number)

 outputs: (optional feed-through of input channels)

This routine will produce a plot with multiple curves with legends from an arbitrary
number of input channels. Each curve is a channel.
Optionally, the input channel data can 'flow through' to the
correspondingly numbered output channel. This is useful if this block is to be placed in
line in a simulation (e.g. probe).

Programmer: Sasan H. Ardalan
Date: August 6, 1991

Parameters
(1) Number of points in each plot
 int npts = 128;
(2) Points to skip before first plot
 int skip = 0;
(3) Plot title
 file title = "PLOT";
(4) X-Axis label
 file x_axis = "X";
(5) Y-Axis label
 file y_axis = "Y";
(6) Plot Style: 1=Color,2=Dashed,1=Same
 int plotStyleParam=1;
(7) Control: 1=On, 0=Off
 int control=1;

Buffers:

Inputs:
Auto fan-in (float)

Capsim Block Documentation 90

Outputs:
Feed Through (Probe)

Capsim Block Documentation 91

plt3d

Description

This is a probe block for displaying three dimensional data. It also supports contour plots.
Input data is received one row at a time. The number of rows is height and the number of
columns is width.

 inputs: One channel

 outputs: (optional feed-through of input channels)

Programmer: Sasan H. Ardalan
Date: June 18, 1991

Parameters
(1) Image width
 int pwidth = 1;
(2) Image height
 int pheight = 1;
(3) Title
 file imageTitle = "3-D Plot";
(4) 0=Three Dim, 1= Contour Plot
 int contourFlag=0;
(5) X-Axis Label
 file x_axis = "X";
(6) Y-Axis Label
 file y_axis = "Y";
(7) Z-Axis Label
 file z_axis = "Z";
(8) 0=Auto Scale, 1=Fixed
 int scaleFlag=0;
(9) zmin
 float zmin1=0;
(10) zmax
 float zmax1=256.0;
(11) zstep
 float zstep1=50;
(12) x view
 float xvu1=8.8;
(13) y view
 float yvu1=3.66;
(14) z view

Capsim Block Documentation 92

 float zvu1=3.0;
(15) Contour label interval
 int labelInt=1;
(16) Control: 1=On, 0=Off
 int control=1;
(17) Visible Surface: 0=both,1=top,2=bottom
 int which=0;

Buffers:

Input:
Buffer 0: each row starting from top row hieght number of rows, with each row
containing width samples.(float)

Output:
Feed Thru

Capsim Block Documentation 93

pltxyz

Description

This is a probe block for displaying irregular three dimensional data. It also supports
contour plots and three dimensional curves.

x , y and z are input as three buffers.

 inputs: 3 input buffers: x,y, and z channels

 outputs: (optional feed-through of input channels)

Programmer: Sasan H. Ardalan
Date: June 18, 1991

Parameters
(1) Number of points
 int npts = 128;
(2) Title
 file imageTitle = "3-D Irregular Plot";
(3) X-Axis Label
 file x_axis = "X";
(4) Y-Axis Label
 file y_axis = "Y";
(5) Z-Axis Label
 file z_axis = "Z";
(6) 0=Three Dim, 1= Contour Plot, 2= Curve
 int contourFlag=0;
(7) 0=Auto Scale, 1=Fixed
 int scaleFlag=0;
(8) x Grids
 int numxGrids=50;
(9) y Grids
 int numyGrids=50;
(10) zmin
 float zmin1=0;
(11) zmax
 float zmax1=256.0;
(12) zstep
 float zstep1=50;

Capsim Block Documentation 94

(13) x view
 float xvu1=8.8;
(14) y view
 float yvu1=3.66;
(15) z view
 float zvu1=3.0;

(16) Contour label interval
 int labelInt=1;
(17) Control: 1=On, 0=Off
 int control=1;
(18) Visible Surface: 0=both,1=top,2=bottom
 int which=0;

Buffers:

Input:
Buffer 0: x (float)
Buffer 1: y (float)
Buffer 2: z (float)

Output:
Feed Thru

Capsim Block Documentation 95

prfile

Description

Prints samples from an arbitrary number of input buffers to a file, which is named as a
parameter. If the file name is set to "stdout", or "stderr" the output goes to the terminal.

- A sample from each input is printed in columns on a single line.
 If printing to stdout, these are labeled with signal names.
- The printing function can be disabled without removing the block,
 via a control parameter.
- Data "flow-through" is implemented: if any outputs are connected,
 their values come from the correspondingly numbered input.
 (This feature is not affected by the control parameter.)
 (There cannot be more outputs than inputs.)

Programmer: L.J.Faber

Parameters:

(1) Name of output file.
 file file_name = "stdout";
(2) Print output control (0/Off, 1/On).
 int control = 1;
(3) Buffer type:0= Float,1= Complex, 2=Integer
 int bufferType=0;

Buffer:

Inputs:
Auto fanin.(float, complex , or integer)
Outputs:
Feed Through.(float, complex , or integer)

Graphic

0

1

0

1

M
Print
Buffers
to a file

M

prfile

Capsim Block Documentation 96

spectrum

Description

This routine will produces the time domain and frequency domain spectrum of the input
buffer. The spectrum is plotted until N/2 points where N is the number of points specified
but reduced to the closest power of 2. To relate the sample numbers in the spectrum plot
to frequency use the following expressions:
 freq = fs * sampleNumber/N
and
sampleNumber = freq * N/fs
where fs is the sampling rate. SampleNumber is the sample number in the spectrum plot.

Note: If capsim is run in non graphic mode, this block will produce a file called
title.tim and title.fre where title is set by the title parameter.

Programmer: Sasan Ardalan, Ramin Nobakht
Date: 2/16/89

Parameters:
(1)) Number of points in each plot (dynamic window size).
 int npts=128 ;
(2) Number of points to skip.
 int skip=0 ;
(3) Plot title.
 file title = "PLOT";
(4) Linear = 0, dB = 1.
 int dbFlag = 0;
(5) Window: 0 = Rec., 1=Hamming.
 int windFlag = 0;
(6) Plot Style: 1=Line,2=Points,5=Bar Chart.
 int plotStyleParam=1;
(7) Time domain On/Off (1/0).
 int timeFlag=1;
(8) Sampling rate (if 0 then x axis is in bins, if negaitive then x axis is normalized).
 int sampFreq=0;
(9) Control : 1= On, 0 = Off.
 int control= 1;
(10) Buffer type:0= Float,1= Complex, 2=Integer
 int bufferType=0;
(11) 0=Static,1=Dynamic
 int mode = 0;

Buffer:

Capsim Block Documentation 97

Inputs:
Buffer 0: Samples to be analyzed.(float, complex, or integer)
Outputs:
Feed Through.

Capsim Block Documentation 98

Graphic

Spectrum
0 0

Capsim Block Documentation 99

scatter

Description

This routine will produce a scatter plot of the two input channels. If only one channel is
connected, the block will set the Q channel to zero. Optionally, the input channel data can
'flow through' to the correspondingly numbered output channel. This is useful if this
block is to be placed in line in a simulation (e.g. probe).

Note: If capsim is run in non-graphic mode, this block will produce a file called
title.sct where title is set by the title parameter.

Programmer: Sasan Ardalan
Date: 8/16/87

Parameters:
(1)) Number of points in each plot (dynamic window size).
 int npts = 100; /* number of buffer points in each plot */
(2) Number of points to skip.
 int skip = 0; /* points to skip before first plot */
(3) Title.
 file title = "PLOT";
(4) x Axis.
 file x_axis = "X";
(5) y Axis.
 file y_axis = "Y";
(6) Plot Style: 1=Line,2=Points,5=Bar Chart.
 int plotStyleParam=2;
(7) Fixed Bounds (0=none, 1=fixed)
 int fixed=0;
(8) Minimum x
 float minx= -1.2;
(9) Maximum x
 float maxx= 1.2;
(10) Minimum y
 float miny= -1.2;
(11) Maximum y
 float maxy= 1.2;
(12) Marker type:0=dot,1=O,2=+,3=X,4=*,5=square,6=diamond,7=triangle
 int markerType=0;
(13) Control : 1= On, 0 = Off.
 int control= 1;
(14) Buffer type:0= Float,1= Complex, 2=Integer
 int bufferType=0;
(15) 0=Static,1=Dynamic
 int mode = 0;

Capsim Block Documentation 100

Buffer:
Inputs:
Buffer 0: I Channel (x) (float, complex, or integer see parameter 14)
Buffer 1: Q Channel (y)(float or integer) (may be omitted)
Outputs:
(optional feed-through of input channels)

Graphic

Scatter

y(n)

0

1

y(n)

0

1

x(n)

Capsim Block Documentation 101

logican

Description

This probe is used to generate traces in a logic analyzer for the signal for which the probe
is connected. Each trace is labeled by the signal name. The signal name may be over
written by specifying a graph title. If there are, say, 4 logican probes in a simulation,
then four traces stacked on top of each other will be plotted. Capsim will automatically
collect all traces from each probe and put them in a single plot .

Consider the following topology,

Q

Q

T Q

Q

T

sink

sinkzeroes

Pulse
Clock

clock

signal_1

signal_3

signal_2

In this simulation the clock is implemented usinging a pulse generator with 128 samples,
16 samples per period and with a pulse width of 8 samples. The amplitude is set at 1. The
probes are logican blocks. The simulation will produce the logic analyzer plot shown
below. Note the signal names by each trace. To over ride these signal names, specify a
title in your logican title parameter.

signal_3

signal_2

signal_1

clock

Plot produced by logican probes

Note 1: If capsim is run in non-graphic mode, this block will not produce any
results.

Note 2: To display the plot you must click on the plot menu in the Capsim pulldown
menu.

Capsim Block Documentation 102

Programmer: Sasan Ardalan
Date: 11/16/90

Parameters:
(1) Number of points.
 int npts = 100; /* number of buffer points in each plot */
(2) Number of points to skip.
 int skip = 0; /* points to skip before first plot */
(3) Title.
 file graphTitle = "LogicAnalyzer";
(4) y Axis.Label
 file y_axis = "Y";

(5) DC Offset
 float dcOffsets = 0;

(6) Gain applied after DC offset
 float gain = 1.0;

(7) Control : 1= On, 0 = Off.
 int control= 1;

Buffer:
Inputs:
Buffer 0: Input date (float)
Outputs:
(optional feed-through of input samples)

Graphic

Capsim Block Documentation 103

image

Description

This probe collects pixels and displays the image using X windows. The displayed image
is manipulated using qplot. A PostScript hardcopy can be obtained from the displayed
image. The image probe determines the depth of the display (1 bit versus, say, 8 bit).
Using the color pulldown menu of capsim, various RGB color tables can be loaded to
view the image. Many images can be viewed simultaneously.

A gain, DC Offset and threshold may be applied to the pixels before display. If the
threshold parameter is zero then it is ignored.

Note: If capsim is run in non graphic mode, this block will produce a file called
title.img where title is set by the title parameter.

Programmer: Sasan Ardalan
Date: November 1990.

Parameters:
(1) Image width in pixels
 int pwidth = 1;
(2) Image height in pixels.
 int height = 1.0;
(3) Threshold (set to o if below, 1 if larger, used for 1 bit display). If 0 ignore.
 float thresh=0;
(4) DC offset before applying threshold.
 float dcOffset = 0;
(5) Gain, applied after adding DC offset.
 float gain = 1;
(6) Image Title.
 file imageTitle="Image"";
(6) X axis label.
 file x_axis = " ";
(7) Y axis label.
 file x_axis = "";
(8) Control: 1=on, 0=off.
 int control=1;
Buffer:

Inputs:
Buffer 0: pixels. (float)
Outputs:
Feed Through

Capsim Block Documentation 104

Graphic

Image

h

w

Capsim Block Documentation 105

imgdisp

Description

This probe collects pixels and displays the image using X windows. The displayed image
is manipulated using qplot. A PostScript hardcopy can be obtained from the displayed
image. The image probe determines the depth of the display (1 bit versus, say, 8 bit).
Using the color pulldown menu of capsim, various RGB color tables can be loaded to
view the image. Many images can be viewed simultaneously.

A gain, DC Offset and threshold may be applied to the pixels before display. If the
threshold parameter is zero then it is ignored.

Note: If capsim is run in non graphic mode, this block will produce a file called
title.img where title is set by the title parameter.

Programmer: Sasan Ardalan
Date: November 1990.

Parameters:
 (1) Threshold
 float thresh = 0;
 (2) DC Offset applied before threshold
 float dcOffset=0;
 (3) Gain
 float gain=1;
 (4) Image title
 file imageTitle = "Image";
 (5) X-Axis label
 file x_axis = "";
 (6) Y-Axis label
 file y_axis = "";
 (7) Control: 1=On, 0=Off
 int control=1;
 (8) Display in same window (Animation) (1=TRUE)
 int displaySequence=1;
 (9) Fixed Bounds:0= None 1=Use
 int fixedBoundsFlag=0;
 (10) X Min
 float xMin=0;
 (11) X Max
 float xMax=1;
 (12) Y Min
 float yMin=0;
 (13) Y Max
 float yMax=1;

Capsim Block Documentation 106

 (14) Enable Colormap Legend: 1=Enable, 0=Disable
 int enableLegend=0;
 (15) Legend Title
 file legendTitle="Legend";
 (16) Legend Min
 float legendMin=0;
 (17) Legend Max
 float legendMax=256;
 (18) Display Axis Flag: 0:Hide,1:Show
 float axisDisplay=0;

Buffer:

Inputs:
Buffer 0: pixels. (float)
Outputs:
Feed Through

Capsim Block Documentation 107

Graphic

Image

h

w

Capsim Block Documentation 108

primage

Description

Stores the input samples into a file organized as an image with specified width and
height.

The file created by primage can be read using rdimage.

Programmer: Sasan Ardalan

Parameters:

(1) Name of output file
 file file_name = "stdout";
(2) Image Width
 int width=1;
(3) Image Height
 int height=1;

Buffer:

Inputs:
Auto fanin.
Outputs:
Feed Through.

Graphic

Store ASCII Image in file

h

w

Capsim Block Documentation 109

prbinimage

Description

Stores the input samples into a file organized as a binary image. Each input pixel is
stored as a byte in the file.

The file created by prbinimage can be read using rdbinimg.

Programmer: Sasan Ardalan

Parameters:

(1) Name of output file
 file file_name = "stdout";
(2) Image Width
 int width=1;
(3) Image Height
 int height=1;

Buffer:

Inputs:
Auto fanin.
Outputs:
Feed Through.

Graphic

Store Image in Binary form in file

h

w

Capsim Block Documentation 110

Complex Blocks and Vector
Processing (FFTs)

Capsim Block Documentation 111

cmxfft

Description

This block produces the FFT of the complex input signal.

Programmer: Prayson Pate, S. Ardalan
Date: April 15, 1988

Parameters:
(1) The FFT length (prefer power of two but not necessary).
 int npts=128.

Buffer:

Inputs:
Buffer 0: Complex input samples. (complex)

Outputs:
Buffer 0: Complex FFT of complex input samples. (complex)

Graphic

FFT

0 0
x(k) X(k)

Capsim Block Documentation 112

cmxifft

Description

This block produces the inverse FFT of the complex input signal.

Programmer: Prayson Pate, S. Ardalan
Date: April 15, 1988

Parameters:
(1) The number of points (prefer power of two)
 int npts=128.

Buffer:

Inputs:
Buffer 0: input samples. (complex)

Outputs:
Buffer 0: Complex FFT of complex input samples. (complex)

Graphic

FFT

0 0
X(k) x(k)

Inverse

Capsim Block Documentation 113

cmxfftfile

Description

This block reads a file and computes its FFT during the initialization phase. (This
produces H(k)). During execution, the block performs a complex multiplication of the
FFT of the file with the input complex data blocks (The input fft, X(k)). It then outputs
the complex result. This block multiplies the two complex data streams as follows:
Each complex sample is assumed to be composed of a real sample followed by an
imaginary sample. This block operates like a "butterfly," i.e.

 c1 = a + jb = x1(0) + x1(1)
 c2 = c + jd = x2(0) + x2(1)

 r = c1 * c2 = (ac-bd) + j(bc+ad) = y(0) + y(1)

Inputs: The FFT of the signal to be filtered, X(k)

Outputs: The FFT of the impulse response (from a file)
 times the input signal, Y(k) = X(k)H(k)

Programmer: Prayson W. Pate,Sasan Ardalan
Date: March 12, 1989

Parameters:

(1) Exponent of FFT length;
 int fftexp=8;
(2) File name with impulse response;
 file file_name = "imp.dat"

Buffer:

Inputs:
Buffer 0: Complex samples (complex)

Outputs:
Buffer 1: Complex samples (complex)

Graphic

Capsim Block Documentation 114

FFT of File

0 0
X(n) Y(n)

Capsim Block Documentation 115

cxadd

Description

Function adds all its complex input samples to yield a complex output sample;
the number of input buffers is arbitrary and determined at run time.
The number of output buffers is also arbitrary (auto-fanout).

Programmer: D.G.Messerschmitt March 7, 1985
Modified: 1/89 ljfaber. add auto-fanout
Modified: 9/91 SHA complex buffers

Parameters

None

Buffers

inputs: auto fan-in (complex)

outputs: auto fan-out (complex)

Graphic

Σ

0
1

2

0
1

2

Capsim Block Documentation 116

cxconj

Description

Function has a single complex input buffer, and outputs the conjugate of each complex
input sample to an arbitrary number of complex output buffers.

Parameters
 None

Buffers:

Input : x (complex)

Output: auto fan-out (complex)

Graphic

0
0

1
2

*()

Capsim Block Documentation 117

cxdelay

Description

Function delays its complex input samples by any number of samples, N.

Modified: April, 1988 L.J.Faber: add auto-fanout.
Modified: June, 1988 L.J.Faber: add default value; kludge fix for feedback problems...set
delay_max.

Parameters:

(1) Number of samples to delay.
 int samples_delay = 1;

Buffer:

Inputs:
Buffer 0: Samples to delay.(complex)

Outputs:
Auto fanout (complex).

Graphic

0
0

1
2

z -N

Capsim Block Documentation 118

cxgain

Description

This block multiplies the incoming complex data stream by the complex parameter
coefficient, and outputs the resulting data values.
Auto fanout is supported.

Parameters:
(1) Gain factor real part
 float factorReal = 1.0;
(2) Gain factor imaginary part
 float factorImag = 0.0;

Buffer:

Inputs:
Buffer 0: Samples (complex).

Outputs:
Auto fanout. (complex)

Graphic

0
0

1
2

Capsim Block Documentation 119

cxmag

Description

This block finds the magnitude of a complex data stream. The magnitude is output as a
real floating point sample.

Programmer: Prayson W. Pate
Date: April 18, 1988

Parameters:

None

Buffer:

Inputs:
Buffer 0: Complex samples. (complex)
Outputs:
Buffer 0: Real magnitude samples. (float)

Graphic

0 0
| . |

x(n)
y(n)

Capsim Block Documentation 120

cxmakecx

Description:

 Inputs: one or two channels

 Outputs: the complex channel

 Parameters: None

This block creates a complex buffer from one or two input buffers. If one input
buffer(buffer 0) is connected, it is assumed to be the real part. The imaginary part of the
complex output is set to zero. If two input channels exist then the second channel (buffer
1) is assumed to be the imaginary part of the complex output sample.

Programmer: Sasan Ardalan
Date: September 4, 1991

Parameters
 None

Buffers

Inputs: If one(float) then set imaginary part of output to zero.
 If two (float) then real part of complex output is buffer 0 and imaginary part is
buffer 1.

Outputs: auto fan-out (complex)

Graphic

0
0

1
21 a+jb

a
b

Capsim Block Documentation 121

cxmakereal

Description

 Inputs: one complex channels

 Outputs: two real channels for the real and imaginary parts

 Parameters: None

This block creates a two real buffers from one complex input buffer.
If one output buffer(buffer 0) is connected, only the real part is output.
If two input channels exist then the second channel (buffer 1) is
the imaginary part of the complex input sample.

Programmer: Sasan Ardalan
Date: September 4, 1991

Parameters
 None

Buffers

Input: x (complex)

Output: Buffer 0, Real part of x (float)
 Buffer 1 (Optional) iamginary part of x (float)

Graphic

0

1

a

b
x 0

a+jb=x

Capsim Block Documentation 122

cxmult

Description

 Inputs: x1, the first complex signal
 x2, the second complex signal

 Outputs: y, the complex output

 Parameters: none
This block multiplies two complex data streams. Each complex
sample is assumed to be composed of a real sample followed by
an imaginary sample. This block operates like a "butterfly," i.e.

 c1 = a + jb = x1(0) + x1(1)
 c2 = c + jd = x2(0) + x2(1)

 r = c1 * c2 = (ac-bd) + j(bc+ad) = y(0) + y(1)

Programmer: Prayson W. Pate
Date: April 13, 1988
Modified: April, 1988

Parameters
 None

Buffers

Inputs: Buffer 0, x1 (complex)
 Buffer 1, x2 (complex)

Output: Buffer 0 y=x1*x2 (complex)

Graphic

X
0

1

0

Capsim Block Documentation 123

cxnode

Description

Function has a single complex input buffer, and outputs each complex input sample to an
arbitrary number of complex output buffers.

Parameters:
None.

Buffer:

Inputs:
Buffer 0: Input to be forked out (complex).
Outputs:
Auto fanout(complex.

Graphic

0

1

02

Capsim Block Documentation 124

Capsim Block Documentation 125

cxphase

Description

This block finds the phase of a complex data stream. The phase is in degrees.

Programmer: Prayson W. Pate
Date: April 18, 1988

Parameters:
None

Buffer:

Inputs:
Buffer 0: Complex samples.(complex)

Outputs:
Buffer 1: Phase in degrees. (float)

Graphic

0 0x(n)
y(n)

Capsim Block Documentation 126

freqimp

Description

Calculate the impulse response from frequency response data.
The frequency response data is supplied as floating point data with the real part the even
sample and the imaginary part as the odd sample.

The frequency data is assumed to be up to fs/2 where fs is the sampling rate. Also let the
number of points be a power of two.

The impulse response will be real and will contain 2*npts samples.

Programmer: Sasan Ardalan
Date: Sometime in 1990

Parameters
(1) Number of frequency points (even odd pairs) to input
 int nfft=64;
(2) Conjugatate (0=No, 1=Yes)
 int conjFlag=0;

Buffers:

inputs:
Buffer0: xfreq (float)

outputs:
Buffer 0: ximp (float)

Capsim Block Documentation 127

Adaptive Filters

Capsim Block Documentation 128

predftf

Description

This block implements a multichannel input/output FIR predictor, which is adapted using
the least squares Fast Transversal Filter algorithm. It can be used as an equalizer, FSE,
DFE, or echo canceller. An arbitrary number p input channels are transversal filtered to
produce an arbitrary number q output estimate signals.

Note: each output buffer connected to this block implies a separate output channel, and
identically numbered error input channel. Input signal channels are then connected to
higher numbered buffers. It is assumed that the estimate error is computed externally.

Do NOT implement an external (causality) unit-delay from output estimate to input error;
this delay is handled automatically.

Param. 1 - Name of ASCII input specification file. Filter orders
 and initial tap values are given. default => prfile

The proper specification file format is:
 (int) # output channels, q
 (int) # input channels, p

 (int) order of in ch.#1 . . . (int) order of in ch.#p

 (float) ch.#1, tap 1 . . . (float) ch.#1, tap last
 . {output ch.1}
 .
 (float) ch.#p, tap 1 . . . (float) ch.#p, tap last
 .
 .
 .
 (float) ch.#1, tap 1 . . . (float) ch.#1, tap last
 . {output ch.q}
 .
 (float) ch.#p, tap 1 . . . (float) ch.#p, tap last

If you have problems reading this file it is because of an improper number of initial tap
values. For various channel orders and output channels the number of initial conditions is
the number of output channels times the sum of the orders of the input channels. So
specify a lot of zeroes!

Param. 2 - Name of output file, for final adapted filter values.
 default => prfileo. The file is written in proper
 input-file format. This file can then be used to initialize
 the filter for the next run, if desired.

Capsim Block Documentation 129

It is assumed that each output prediction filter will create one estimate output for EACH
input sample/error sample pair. Any decimation, etc. must occur externally.

Param. 3 - (float) lambda. data forgetting factor. default => 1.0
 Lambda = 1.0 implies no long term adaptation occurs.
 4 - (float) delta. initial value, forward prediction energy.
 default => 1e-4

 5 - (int) wait. number of samples to skip before starting
 adaptation. The predictor still inputs samples, and
 outputs a zero estimate. default => 0
 6 - (int) adapt. number of samples to adapt filter. After
 this number, filter taps are fixed, and estimates are still
 produced. default => -1 (implies always adapt)

Programmer: L.J. Faber
Date: April 1988
Modified: May 1988 add multichannel output
Modified: June 1988 estimate-referenced prediction energy
Modified: Aug 1988 est. input power. new parameter delta.
Modified: Sept 1988 add parameters 5,6 and associated.

Parameters:

(1) Enter file name with order and initial weights spec.
 file ifile_name = "prfile";
(2) Enter file name to store final weights and info.
 file ofile_name = "prfileo";
(3) Enter forgetting factor <= 1.
 float lambda = 1.0;
(4) Enter soft constraint << 1.
 float delta = 1e-4;
(5) Enter number samples to wait before starting adaptation.
 int wait = 0;
(6) Enter number of samples to stop adaptation and freeze.
 int adapt = -1;

Buffer:

Inputs:
Auto fanin. See description (float).
Outputs:
Auto fanout. See description (float).

Capsim Block Documentation 130

Graphic

Σ

Σ

d0(n)
d0(n)

d1(n)
d1(n)

e0(n)e1(n)

x0(n)

x1(n)

2

3

1 0

0

1

-

-

Multi-Channel
General Order
Fast Transversal
Adaptive
Filter

Capsim Block Documentation 131

predlms

Description

This block implements a multichannel input/output FIR predictor, which is adapted using
the power normalized LMS algorithm. It can be used as an equalizer, FSE, DFE, or echo
canceller. An arbitrary number p input channels are transversal filtered to produce an
arbitrary number q output estimate signals.

Note: each output buffer connected to this block implies a separate output channel, and
identically numbered error input channel. Input signal channels are then connected to
higher numbered buffers. It is assumed that the estimate error is computed externally.

Do NOT implement an external (causality) unit-delay from
output estimate to input error; this delay is handled automatically.

Param. 1 - Name of ASCII input specification file. Filter orders and initial tap values
are given. default => prfile

The proper specification file format is:
 (int) # output channels, q
 (int) # input channels, p

 (int) order of in ch.#1 . . . (int) order of in ch.#p

 (float) ch.#1, tap 1 . . . (float) ch.#1, tap last
 . {output ch.1}
 .
 (float) ch.#p, tap 1 . . . (float) ch.#p, tap last
 .
 .
 .
 (float) ch.#1, tap 1 . . . (float) ch.#1, tap last
 . {output ch.q}
 .
 (float) ch.#p, tap 1 . . . (float) ch.#p, tap last

Param. 2 - Name of output file, for final adapted filter values.
 default => prfileo. The file is written in proper
 input-file format. This file can then be used to initialize
 the filter for the next run, if desired.

If you have problems reading this file it is because of an improper number of initial tap
values. For various channel orders and output channels the number of initial conditions is
the number of output channels times the sum of the orders of the input channels. So
specify a lot of zeroes!

Capsim Block Documentation 132

It is assumed that each output prediction filter will create one estimate output for EACH
input sample/error sample pair. Any decimation, etc. must occur externally.

Param. 3 - (float) gamma. It is a multiplicative factor to control adaptation rate.
default => 1.0
Param. 4 - (float) delta. Tap leakage factor. default => 1.0
 Default implies no tap leakage occurs.

 5 - (int) wait. number of samples to skip before starting
 adaptation. The predictor still inputs samples, and
 outputs a zero estimate. default => 0
 6 - (int) adapt. number of samples to adapt filter. After
 this number, filter taps are fixed, and estimates are still
 produced. default => -1 (implies always adapt)

Programmer: L.J. Faber
Date: April 1988
Modified: May 1988 add multichannel output
Modified: June 1988 estimate-referenced prediction energy
Modified: Aug 1988 est. input power. new parameter delta.
Modified: Sept 1988 add parameters 5,6 and associated.

Parameters:

(1) Enter file name with order and initial weights spec.
 file ifile_name = "prfile";
(2) Enter file name to store final weights and info.
 file ofile_name = "prfileo";
(3) Enter LMS adaptation gain constant.
 float gamma = 0.1;
(4) Enter tap leakage factor.
 float delta = 1.0;
(5) Enter number of samples to skip before adaptation.
 int wait = 0;
(6) Enter number of samples to stop adaptation and freeze.
 int adapt = -1;

Buffer:

Inputs:
Auto fanin. See description.
Outputs:
Auto fanout. See description.

Graphic

Capsim Block Documentation 133

Σ

Σ

d0(n)
d0(n)

d1(n)
d1(n)

e0(n)e1(n)

x0(n)

x1(n)

2

3

1 0

0

1

-

-

Multi-Channel
General Order
LMS
Adaptive
Filter

Capsim Block Documentation 134

lms

Description

This block implements a simple LMS adaptive filter. Below, x(n) is the input sample and
d(n) is the desired response.
x(n) = [x0(n) x1(n) ... xN-1(n)]T
w(n) = [w0(n) w1(n) ... wN-1(n)]T
dest(n) = xT(n)w(n-1)
e(n) = d(n) - dest(n)

w(n) = w(n-1) + µx(n)e(n)

Programmer: Adali, Tulay
Date: September 23, 1988

parameters
(1) Filter order
 int N = 10 ;
(2) LMS gain constant
 float mu=0.1;

Buffers
Input Buffers

Buffer 0: input samples x(n) (float)
Buffer 1: desired response d(n) (float)

Output Buffer

Buffer 0: estimation dest(n) (float)

Graphic

Σw (n)
x(n)

d(n)

e(n)+
-0

1

0

Capsim Block Documentation 135

Processing

Capsim Block Documentation 136

Capsim Block Documentation 137

autoxcorr

Description

If one input then compute autocorrelation.

If two inputs then compute crosscorrelation.

Both are computed in the frequency domain. Thus, this block operates on a
vector of data.

Programmer: Sasan Ardalan
Date: Dec. 27, 1990

parameters
 Number of samples
 int npts=128;

Buffers
Inputs:
Buffer 0: x samples (float)
Buffer 1: y samples (float) optional. Connected only if cross correlation desired.

Outputs:
Buffer 0: auto(cross) correlation samples (float)

Graphic

autocorrelation/
cross correlation

x

y
z

0

1
0

Capsim Block Documentation 138

Capsim Block Documentation 139

autoeigen

Description

The block computes the autocorrelation matrix of the input data stream x and stores the
eigenvalues and eigenvectors of the autocorrelation matrix in a file.

The autocorrelation matrix is: Rxx = E{ x(n) xT(n) } where
x(n) = [x(n) x(n-1) ... x(n-N+1)]T

The biased estimate #3, given in "Adaptive Filters and Equalisers"
(Mulgrew and Cowan ,page 27) is used for computing the autocorrelation function.

The eigenvalues and eigenvectors are computed using routines from "Numerical Recipes
in C".

Programmers: Sasan Ardalan, Tulay Adali
Date: January 10, 1991

parameters
 N : Size of the input vector (dimension of autocorrelation matrix)
 int N=2 ;
 K : Summation index
 int K=100 ;
 File to store eigenvalues,eigenvectors
 file fileName="stdout";

Buffers
Inputs:
Buffer 0: x samples (float)

Outputs:
Auto feed through

Graphic

Capsim Block Documentation 140

Eigenvalues/Eigenvectors
Autocorrelation matrix

x 0

Capsim Block Documentation 141

divby2

Description

This block produces a square wave at half the frequency of the incomming wave.

Programmer: Sasan Ardalan

Parameters:
None

Buffer:

Inputs:
Buffer 0: Input signal. (float)

Outputs:
Buffer 0: Square wave at half frequency of input buffer 0.(float)

Graphic

0 0x(n)
y(n)

.

. 2freq

Capsim Block Documentation 142

ang

Description

 parameters: none

 inputs: x, numerator
 y, denominator

 outputs: z, atan(x/y)

 description: This block find the inverse tangent
 of x/y

Parameters
 None

Buffers

Inputs: buffer 0 x (float)
 buffer 1 y (float)

Outputs: buffer 0 z (float)

Graphic

x 0

z=atan(x,y)
0 z

y 1

Capsim Block Documentation 143

scrambler

Description

This routine expects a sequence of input bits (0.0 or 1.0) and gives as an output another
sequence of bits (also 0.0 or 1.0).

The scrambler and descrambler implemented here, which are self-synchronizing, are
given in the CCITT recommendation V35.

The input parameters are:

mode: The operation done on the input sequence is either scrambling
 (if mode = 0) or descrambling (if mode = 1).
seed: Can be used to force two scramblers out of phase
 by choosing two values for the seed
Programmer: O. E. Agazzi / D.G.Messerschmitt
Date: March 31, 1982.
Converted to V2.0 by DGM March 11, 1985

Parameters:
(1) Operation: 0=scrambling. 1=descrambling.
 int mode;
(2) Shift register initial seed.
 int seed = 12;

Buffer:

Inputs:
Buffer 0: Input bits.(float)
Outputs:
Buffer 0 : Scrambled bits.(float)

Graphic

Scrambler
0 0

Capsim Block Documentation 144

sqr

Description

Square the input samples.

Parameters:
None.

Buffer:

Inputs:
Buffer 0: Input samples.
Outputs:
Buffer 0: Squared samples.

Graphic

0 0
(.)2

Capsim Block Documentation 145

cubepoly

Description

Implements a cubic polynomial nonlinearity of the form:
 output = a*x + b*x^2 + c*x^3,
where x is the input
There are 3 parameters: a, b, c.

Parameters
 (1) linear coefficient
 float a;
 (2) quadratic coefficient
 float b;
 (3) cubic coefficient
 float c;

Buffer:

Inputs:
Buffer 0: Input samples (float).
Outputs:
Buffer 0: Output samples (float).

Graphic

ax+ bx + c x
0 02 3

Capsim Block Documentation 146

limiter

Description

This block implements a hard limiter.

Programmer: Ray Kassel
Date: October 29,1990

Parameters:

 Minimum value.
 float min=0.0;
 Maximum value.
 float max=1.0;

Buffer:

Inputs:
Buffer 0: Input signal.
Outputs:
Auto fanout.

Graphic

maxValue

minValue

Capsim Block Documentation 147

quot

Description

quotient

parameters: none

inputs: x, numerator
 y, denominator

outputs: z, the quotient of x and y

This block takes two inputs and produces their quotient

Parameters

None

Buffers:

Inputs
 Buffer 0: float x;
 Buffer 1: float y;

Output
 Buffer 0: float z;

Graphic

x 0

z=x/y
0 z

y 1

Capsim Block Documentation 148

trig

Description

Perform various operations on the input data stream.

Programmer: Sasan Ardalan
Date: Dec. 29, 1990

Parameters
(1) Gain
 float gain = 1.;
(2) DC Offset
 float offset = 0.;
(3) Operation:0=sin,1=cos,2=x**2,3=sqrt(x), 4=10 log x**2";
 int operation = 0;

Buffers:

Inputs:
Buffer 0: x (float)

Outputs:
Buffer 0: xmod (float)

Capsim Block Documentation 149

Capsim Block Documentation 150

Decimation/Interpolation/
Multiplexing

Capsim Block Documentation 151

cmux

Description

This block ACTIVELY selects one input data channel to send to its output. Input channel
0 is always the control port; its input stream of numbers selects which input data channel
to route to the output. The number N of input data channels is arbitrary (>= 1). In the
event that the control port sample does not correspond to an attached input buffer number
(i.e. 1-N), a zero sample is output. Since the control buffer is (float), rounding is used to
generate an integer buffer number. Note: ALL input buffers are incremented (it_in) at
each time, whether their sample is chosen for output or not.

Auto-fanout is supported.
There are no parameters.

Programmer: L.J. Faber
Date: April, 1988.

Parameters:
None

Buffer:

Inputs:
Buffer 0: Control port. Selects what input channel to output. (float)
Buffer 1,2,... N channels to output based on buffer 0. (float)

Outputs:
Auto fanout (float)

Graphic

0

1

2

N

0.
.
.

Capsim Block Documentation 152

Capsim Block Documentation 153

resmpl

Description

This block performs interpolation or decimation on an input data stream, in order to
change the output data rate. Polynomial or sinc interpolation is used to create output
values that occur "between" input points. An initial time offset between the input/output
streams can be entered.

Param. 1 - (float) ratio: output data rate/input data rate.
 2 - (float) phi: delay of first output sample, relative to
 first input sample; expressed in units of input data
 period. Normally -1 < phi < 1. default: 0.
 3 - (int) intype: type of interpolation:
 0: sinc (3 point)
 1: 1rst order (line) (default)
 2: 2nd order (parabola)
 3: 3rd order polynomial
 Warning: although any output/input rate ratio > 0 will work, some spectral problems can
occur. Time interpolation is not optimal, since there is no access to an infinite number of
points! This problem is magnified as ratio deviates farther from unity. If ratio < 1
(decimation mode), aliasing can occur if the input signal is not properly bandlimited.

Programmer: L.J. Faber
Date: June, 1988.

Parameters:
(1) ratio: output data rate/input data rate.
 float ratio = 1.;
(2) phi: delay of first output sample, relative to first input sample; expressed in units of
input data period. Normally -1 < phi < 1. default: 0.
 float phi = 0;
(3) Type of interpolation:
 0: sinc (3 point)
 1: 1rst order (line) (default)
 2: 2nd order (parabola)
 3: 3rd order polynomial
 int intype = 1;

Buffer:
Inputs:
Buffer 0: Input samples. delay_max = 3;
Outputs:
Buffer 0 : Output samples.

Graphic

Capsim Block Documentation 154

Resample
Change sampling rate
Interpolate/
Decimate

0 0

Capsim Block Documentation 155

mux

Description

This block actively selects one input data channel to send to its output. Input channel 0 is
always the control port; its input stream of numbers selects which input data channel to
route to the output. The number N of input data channels is arbitrary (>= 1). In the event
that the control port sample does not correspond to an attached input buffer number (i.e.
1-N), a zero sample is output. Since the control buffer is (float), rounding is used to
generate an integer buffer number.
Note: ALL input buffers are incremented (it_in) at each time, whether their sample is
chosen for output or not.

The output supports auto-fanout (automatic "forking").
There are no parameters.

Programmer: L.J. Faber
Date: April, 1988.

Parameters:

None.

Buffer:

Inputs:
Buffer 0: Control signal (float).
Buffer 1 through Buffer N (float).

Outputs:
Auto fanout (float).

Capsim Block Documentation 156

demux

Description

This block provides periodic demultiplexing of an input data stream. It is appropriate for
sub-sampling (integer decimation) or creating data streams for fractionally-spaced
equalization (FSE). For every N (integer) input samples, 1 sample is sent to each output.
The number of outputs and their phases are selectable.

Programmer: L.J. Faber
Date: April 1988

Parameters:

(1) Ratio input rate/output rate, N.
 int N = 8;
(2) (array) specifies the "phase" (delay in samples relative to first input sample) for each
output (10 Max). All phases must be non-negative.
 array phases;

Buffers:

Inputs:
Buffer 0: Samples to be decimated.(float)

Outputs:
Auto fanout. Determined by number of elements in array. (float)

Graphic

0

0
x(n)

N 1

m

Capsim Block Documentation 157

toggle

Description

This block selects one of two input data channels to output. It always begins with channel
0. After a delay, it switches to ch.1. Parameter 1 selects the number of samples of ch.0 to
output before switching to ch.1.

Note: Both input buffers are incremented (it_in) at each time, whether their sample is
chosen for output or not.

The output supports auto-fanout (automatic "forking").

Programmer: L.J. Faber
Date: April, 1988.

Parameters:
(1) Selects the number of samples of ch.0 to output before switching to ch.1.
 int switch_time = 0;

Buffer:

Inputs:
Buffer 0: Channel 0.(float)
Buffer 1 : Channel 1.(float)
Outputs:
Buffer 0: Channel 0 then Channel 1.(float)

Graphic

Toggle
0

1

0

Capsim Block Documentation 158

hold

Description

This block simulates a sample and hold circuit. The lone parameter specifies the number
of samples to hold the value. Triggering is on the positive edge of the clock.

Programmer: Sasan Ardalan
Date: February 22, 1988

Parameters:

(1) Hold time in samples.
 int holdTime = 1;

Buffer:

Inputs:
Buffer 0: Samples to be held.(float)
Buffer 1 : Clock signal. Hold on rising edge.(float)

Outputs:
Buffer 0: Sampled samples.(float)

Graphic

0 0x(n) y(n)Sample
and
Hold

1

p(n)

Capsim Block Documentation 159

stcode

Description

This block inputs data and stretches it with zeros. The code output oversampling rate
(samples per baud interval) is selected by the parameter `smplbd'.

Programmer: A. S. Sadri
Date: June 4, 1990

parameters

(1) Samples per baud
 int smplbd = 8;

Buffer:

Inputs:
Buffer 0: Samples to be held.(float)
 delay_max = 1;

Outputs:
Buffer 0: Stretched line code.(float)
Buffer 1: Input symbols at symbol rate.(float)

Graphic

0 0

1

N

Capsim Block Documentation 160

Building Blocks

Capsim Block Documentation 161

add

Description

Function adds all its input samples to yield an output sample;
the number of input buffers is arbitrary and determined at run time.
The number of output buffers is also arbitrary (auto-fanout).

Programmer: D.G.Messerschmitt March 7, 1985
Modified: 1/89 ljfaber. add auto-fanout

Parameters:
None

Buffer:
Inputs: Auto fanin.
Outputs: Auto fanout

Graphic

Σ

0

1
0

1

n
m

.

.

.

.

.

.

Capsim Block Documentation 162

delay

Description

Function delays its input samples by any number of samples, N.

Modified: April, 1988 L.J.Faber: add auto-fanout.
Modified: June, 1988 L.J.Faber: add default value; kludge fix for feedback problems...set
delay_max.

Parameters:

(1) Number of samples to delay.
 int samples_delay = 1;

Buffer:

Inputs:
Buffer 0: Samples to delay.(float)

Outputs:
Auto fanout (float).

Graphic

0 0x(n)
y(n)

z
-N

Capsim Block Documentation 163

gain

Description

This block multiplies the incoming data stream by the parameter coefficient, and outputs
the resulting data values.
Auto fanout is supported.

Parameters:
(1) Gain factor.
 float factor = 1.0;

Buffer:

Inputs:
Buffer 0: Samples.

Outputs:
Auto fanout.

Graphic

0
0

Gain

Capsim Block Documentation 164

mixer

Description

This block takes two inputs and produces their product.

Parameters:
None.

Buffer:

Inputs:
Buffer 0: Input Samples X. (float)
Buffer 1: Input Samples Y.(float)
Outputs:
Buffer 0: Product X*Y (float)

Graphic

X
0 0

1

Capsim Block Documentation 165

multiply

Description

Function multiplies all its input samples to yield an output sample.

The number of input buffers is arbitrary and determined at run time (auto fan-in)

The number of output buffers is also arbitrary (auto-fanout).

Parameters
 None

Buffers

Inputs: Auto fan-in (float)

Outputs: Auto fan-out (float)

Graphic

X

Capsim Block Documentation 166

node

Description

Function has a single input buffer, and outputs each input sample to an arbitrary number
of output buffers.

Parameters:
None.

Buffer:

Inputs:
Buffer 0: Input to be forked out (float).
Outputs:
Auto fanout(float).

Graphic

Capsim Block Documentation 167

sum

Description

This block is an extension of "add". It creates a Weighted Sum of all input channels and
sends it to the output buffer(s). (This is convenient for negating inputs, for example.)
Parameter one is an array for input channel weights.

The number of input buffers is determined at run time, 10 maximum.
The number of output buffers is determined at run time (auto-fanout).

Programmer: L.J. Faber
Date: April 20, 1988.

Parameters:
(1) Array of weights.
 array weights;

Buffer:

Inputs:
Automatic. Maximum 10.(float)
Outputs:
Auto fanout.

Graphic

Σ

a0

a1

am

0
1

2

0
1

n

Capsim Block Documentation 168

operate

Description

This block performs a number of operations on its input samples x to produce the output
samples y.

y= f[(x-DC)*gain]
where
f(x) = x,
f(x) = abs(x),
f(x) = x^2,
f(x) = sqrt(x),
f(x) = 10 log10(x*x).

Programmer: Sasan Ardalan
Date: January 10, 1991

parameters
 Number of samples to output
 int N = 30000;
 First sample to start from
 int first = 0;
 Gain
 float gain = 1.;
 DC Offset
 float offset = 0.;
 Operation:0=none,1=abs,2=square,3=sqrt,4=dB
 int operation = 0;

Buffers
Inputs:
Buffer 0: x samples (float)

Outputs:
Buffer 0: y samples (float)

Graphic

Capsim Block Documentation 169

x 0
Operate

0 y

Capsim Block Documentation 170

Capsim Block Documentation 171

Capsim Block Documentation 172

 Synchronization

Capsim Block Documentation 173

loopfilt

Description

Loop filter for PLL

parameters: gain#1, gain#2, gain#3 of the filter

inputs: in, the signal to be filtered

outputs: out, the filtered signal

description: This block implements a loop filter as a recursive equation:
 y(n)=2*y(n-1)-y(n-2)
 +g1*[x(n)-2*x(n-1)+x(n-2)]
 +g2*[x(n)-x(n-1)]
 +g3*x(n)

This filter can be used as a PLL loop filter.

Programmer: Ray Kassel
August 9, 1990

Parameters
 (1) Gain1
 float g1=1.0;
 (2) Gain2
 float g2=0.0;
 (3) Gain3
 float g3=0.0;

Buffers:

Input : (float) x

Output:
 delay_max = 3;
 (float) y

Capsim Block Documentation 174

Capsim Block Documentation 175

pump

Description

Charge pump and loop filter for PLL

This block implements a charge pump loop filter as a recursive equation:
 y(n)=y(n-1)+g1*[x(n)-x(n-1)]

This filter can be used as a PLL loop filter.

parameters: g1, integrate gain of the filter
 vs, voltage step magnitude

inputs: up, of phase detector
 down, of phase detector

outputs: out, the filtered signal

Parameters
(1) Integrate gain
 float g1=1.0;
(2) Voltage step
 float vs=1.0;

Buffers

Inputs: Buffer 0, delay_max = 2; up (float)
 Buffer 1, delay_max = 2; down (float)

Outputs Buffer 0, delay_max = 2; y (float)

Capsim Block Documentation 176

vcm

Description

voltage-controlled multivibrator

 parameters: fs, sampling frequency
 fo, center frequency

 inputs: lambda, phase update term

 output: square wave equivalent of cos(2*PI*fo*t+theta)

 This block produces samples of the outputs every 1/fs seconds with frequency of fo. The
phase is updated as theta=theta+lambda (integrates the input)

Parameters
(1) Sampling Rate
 float fs=32000.;
(2) Center Frequency
 float fo=1000.;

Buffers:

Inputs: Buffer 0 lambda(float)

Output: Buffer 0 data_out (float)

Capsim Block Documentation 177

dco

Description

digitally controlled oscillator

This block produces samples of the outputs every 1/fs seconds. The dco behaves just
like an FM modulator. The phase is updated as theta=theta+lambda (integrates the
input)
θ(n) = θ(n-1) + λ

parameters:
 fs, sampling frequency
 fo, center frequency
 A, amplitude

inputs: lambda, phase update term
outputs:
 A*cos(2*PI*fo*t+theta)
 A*sin(2*PI*fo*t+theta)

Programmer: John T. Stonick

Parameters:
(1) fs, sampling frequency.
 float fs=1.;
(2) fo, center frequency.
 float fo=1.;
(3) A, amplitude.
 float A=1.;

Buffer:

Inputs:
Buffer 0: lambda; (float)
Outputs:
Buffer 0: In phase output (cosine); (float)
Buffer 1: Quadrature output (sine); (float)

Graphic

Capsim Block Documentation 178

DCO
0 0

1

Capsim Block Documentation 179

zc (zero crossing detector)

Description

This block generates impulses at the zero crossings of the input signal.

Written by: Sasan Ardalan, October 1989.

Parameters:

(1) Trigger edge: 1= Rising, 0 = Falling.
 int edge = 1;

Buffer:

Inputs:
Buffer 0: Input signal(float).

Outputs:
Buffer 0: Impulses at zero crossing (float)

Graphic

ZC
0 0

Capsim Block Documentation 180

Miscellaneous

Capsim Block Documentation 181

null

Description

This block does nothing, simply puts its input samples on its output buffer. It is useful as
a temporary substitute for a block.

Parameters:
None.

Buffer:

Inputs:
Auto fanin.
Outputs:
Auto fanout

Graphic

Null

0
0

1
.
.
.

.

.

.

Capsim Block Documentation 182

tee

Description

This block is a programmable tap-off for data lines. It can be used for example as a
connector to print or plot blocks. It is inserted into a connection line between two blocks;
input data flows to Output 0 unchanged. Output 1 is a modified version of the input:

Programmer: L.J. Faber
Date: May 1988

Parameters:
(1) Number samples to output; default => all
 int N = 30000;
(2) Index first sample; default => start from first
 int first = 0;
(3) Gain; default => unity gain
 float gain = 1.;
(4) DC offset; default => no offset
 float offset = 0.;

Buffer:

Inputs:
Buffer 0: Input samples.

Outputs:
Buffer 0: Feed Through samples.
Buffer 1: Tapped samples.

Graphic

0 0

1

Tee

Capsim Block Documentation 183

skip

Description

This block eats the first N values, useful for skipping transient periods.

-Parameter one: the number of samples to skip

Programmer: John T. Stonick
Date: January 1988

Parameters
(1) Number of samples to skip
 int no_skip=100;

Buffers:

Input: Buffer 0 : xin (float)

Output: Buffer 0: xout (float)

Capsim Block Documentation 184

threshold

Description:

Compares input with threshold and outputs a 0 if less, and 1 if greater or equal Output
occurs on positive edge of control input

 parameters: threshold

 inputs: x, signal to threshold
 in_control, control signal

 outputs: y, the threshold decision

This block compares the input with a threshold and outputs a 1 if the input is less than
the threshold, or 0 if the input is greater than or equal to the threshold. Output occurs on
positive edge of control input.

Parameters
(1) Threshold
 float thh=0.0;

Buffers

Inputs: Buffer 0: delay_max = 2, x (float)
 Buffer 1: delay_max = 2, in_control (float)

Output: Buffer 0 y(float)

Graphic

x 0 Threshold 0 y

0

1

1

Control

Capsim Block Documentation 185

Capsim Block Documentation 186

Channel Models

Capsim Block Documentation 187

transline

Description

"Transmission Line Network Modeling":
This block produces the impulse response of a transmission line system. Depending on
the type parameter, the impulse response for point to point nodes or the echo path impulse
response is calculated. Once the impulse response is calculated, it then uses the overlap
save method for fast convolution to model the network through the calculated impulse
response.

The network is described by a toplogy file. An example is given below:

node1 node2 node3
node2 node4
node3
node4
node1 transmissionLineType length
node2 transmissionLineType length
node3 transmissionLineType length 100 0
node4 transmissionLineType length open

source node1 node2 node4

 node3

A transmission line network is represented by a graph. The graph contains vertices or
nodes and edges. The nodes hold information about the edges. Edges can be transmission
lines or lumped elements. Nodes are either binary, such as node1 in the example, or they
are unary such as node2 (a cascade node) or they are loads. Nodes node4 and node3 are
loads. Therefore, load nodes contain besides the transmission line type and length,
tinformation about the load. Only real loads or open circuits are allowed. For general
loads see lumped elements below. node3 is a 100 Ohm load. node4 is an open circuit
(bridged tap).

In the topology describing the graph, if a node is followed by two nodes it is a binary
node (node1). If it is followed by a single node (node2 above) it is a cascade node. If no

Capsim Block Documentation 188

node follows the node name then the node is a load. The nodes node3 and node4 are
loads. The source node is implied.

Note that the topology file consists of two distinct sections. The first section describes the
node interconnection. The second section describes the node parameters such as
transmission line type, lengths and load. All dimensions are in meters. Including the
length.

Supported Transmission Line Types

The transmission line types are specified in the file trans_types.dat. The following
transmission lines are supported:

r
i

r
s

t

ε
r

Coax

r
i

d

ε
r

Parallel Conductors

r
i

h ε
r

r
i

r
s

t

ε
r

Balanced Shielded Line

h

Single Wire Near Ground

ε
r

Supported Transmission Lines

Also supported but not shown are any transmission line for which the R.L,C, and G
parameters may be specified.

Lumped Element

Also supported is the lumped element section shown below:

Capsim Block Documentation 189

R L

C G

Lumped Element Model

The transmission line types or lumped element values for each node are specified in the
topology file following the node name.

The transmission line types are described in a data base in a file called trans_types.dat.
This file is organized as follows:

name1 parameter1 parameter2 parameter3 parameter4
name2 parameter1 parameter2 parameter3 parameter4
name3 parameter1 parameter2 parameter3 parameter4
...
nameN parameter1 parameter2 parameter3 parameter4

The first component is the name of the transmission line. The name is formed as follows:
The first few characters describe the transmission line type. The next characters in the
name provide a distinct name for the transmission line with the specified parameters. For
example,

coaxthin 0.001 0.005 2.25 0.001
coaxthick 0.002 0.01 2.25 0.001

specify two transmission lines of type coax. Their geometric parameters are different,
however. One has a shield radius of 1 cm (coaxthick) while coaxthin has a shield radius
of 0.5 cm. In this manner we can specify for example an ethernet thick and thin coax
segment. All dimensions are in meters. The dielectric constant for both lines is 2.25.

For the supported transmission lines, the parameters are (refer to the figure above):

(1) Coax

coaxName ri rs εr t

(2) Parallel Conductors

Capsim Block Documentation 190

paralName ri d εr 0

(3) Balanced Shielded Line

balshName ri rs εr h

(4) Wire Near Ground

wireabgName ri h εr 0

(5) Default

name r l c g

In the above, the italic letters are mandatory. The Name changes to distinguish the same
line type but with different parameters. The 0 in the fourth parameter for 2 and 3 is
mandatory.

Specifying RLCG parameters:

By default, the 4 parameters describe the r, l, c and g parameters of any line. This is used
for twisted pair or any other type of transmission line. In this case, the name is arbitrary.
That is, no required letters are needed. However, the names cannot begin with the
italicized names for the supported transmission lines specified.

Specifying Lumped Element Parameters

Lumped element parameters are specified in the topology file following the node name.
That is, instead of specifying a transmission line type, the values for the lumped elements
are specified. For example,

node1 R100_L0.001_C1e-12_G0.01 0

and

node1 r100_l0.001_c1e-12_g0.01 0

specify a lumped element with R= 100 Ohms, L = 1 mH, C= 1 pF, G = 0.01 MHOs.
Note that you can use upper or lower case letters for R,L,C and G. If you omit an element
its value is assumed to be zero. Thus,

node2 R100_G0.01 0

Specifies a voltage divider where L=0 and C = 0. The use of admittance for G is useful
since G=0 implies an open circuit.

Capsim Block Documentation 191

Note the zero following the lumped element value specification. This is mandatory
indicating a length of 0 which is ignored.

A lumped element can be used as a load by following the node with an open circuit.

Hence,

n1 n2
n2
n1 R100 0
n2 C100e-12 0 open

specifies a network with series 100 Ohm resistor and a 100 pF capacitor for a load.

R

C

n1, n2

Plane Wave Propagation

Normal incidence plane wave propagation through inhomogeneous media can be
modeled using the transmission line block. In this case, if we assume lossless
transmission through a
medium with dielectric constant εr and permeability µ, then the medium can be specified
in the trans_types.dat file as follows:

name 0 µ εrε0 0

where ε0 is the permittivity of free space.

Essentially, we replace the RLCG parameters with their free space equivalents.

To model plasmas use the following specification:

palsmaName collision_frequency electron_density 0 0

The electron density is in electrons per cubic cm.

Capsim Block Documentation 192

Example:

Consider the topology,

n1 n2
n2 n3
n3
n1 material1 1000
n2 plasmaTest 2000
n3 material2 500 377 0

and let the trans_types.dat file contain,

material1 0 1.257e-6 4*8.85e-12 0
material2 0 1.257e-6 1.3*8.85e-12 0
plasmaTest 0 10e10 0 0

Note that free space is indicated by a real matched termination of 377 Ohms at the "load"
node n3.

ε r Plasma ε r

Free Space
incident
plane wave

n1 n2 n3

= 4 =1.3

 Example of plane wave propagation

Capsim Block Documentation 193

Block Parameters:

The parameters are as follows:
Param.
 1 - (int) typeImpulse: point to point, echo path, or bandpass
 point to point
 2 - (int) implexp: log2 [length of impulse response in samples].
 3 - (float) fsamp: sampling rate in Hz.
 4 - (float) sourceImp: real source impedance, Ohms.
 5 - (file) netFileName: ASCII file which contains network topology.
 6 - (file) nodeName: node name to be analyzed (impulse response
 from source to this node).
 7 - (float) fstart: Start frequency, Hz for bandpass system.
 8 - (float) fdel: Frequency step, Hz for bandpass system.

Convolution is performed by the fft overlap-save method (described in Oppenheim &
Schafer, Digital Signal Processing, pp. 113).

The FFT length must be greater than the impulse response length.
For efficiency, it should probably be more than twice as long.

Note: The impulse response, complex frequency response and input impedance are stored
in the files nodeName.imp, nodeName.fre, and nodeName.zin respectively.

Programmer: Sasan H. Ardalan, Overlap-save method by M. R. Civanlar
Date: July 26, 1990

Capsim Block Documentation 194

Parameters
(1) 0: point to point, 1: echo path, 2: bandpass
 int typeImpulse=0;
(2) log2(length of impulse response in samples
 int implexp =8;
(3) Sampling Rate, Hz
 float fsamp=1.e6;
(4) Source Impedance
 float sourceImp = 100.0;
(5) (file)ASCII file which holds description of network
 file netFileName = "net.top";
(6) Name of node for impulse response
 file nodeName = "src";
(7) Start frequency for bandpass system (Hz)
 float fstart=0;
(8) Frequency step for bandpass system (Hz)
 float fdel=0;

Buffers
Inputs:
Buffer 0: Input signal(float).

Outputs:
Buffer 0: Channel Response (float)

Graphic

HybridN
0 0

Capsim Block Documentation 195

doppler

Description

"Doppler Shift":
This block takes a real input and performs a doppler shift. This is done in the frequency
domain, where each frequency is shifted by
 df(k) = (vm/c)f(k) = (vm/c)(fb + k*df)
where
 df(k) is the shift of the kth bin in the frequency domain (after FFT of block of data),
 vm is the velocity of the target,
 c is the speed of light
 fb is the beginning frequency of the band
 df is fs/N where fs is the sampling rate and N is the number of
 FFT points.

Parameters
 1 - (int) numberSamples: Total number of input samples.
 2 - (float) fs: The sampling rate.
 3 - (float) fb: The beginning frequency.
 4 - (float) vm: The velocity of the target.

Programmer: Sasan H. Ardalan
Date: June 14, 1990

parameters

 (1) Total number of input samples
 int numberSamples =128;
 (2) Sampling rate, Hz
 float fs=10240e6;
 (2) Beginning frequency
 float fb=20e9;
 (3) Target velocity
 float vm=0;

Graphic

Doppler
Shift

0 0

Capsim Block Documentation 196

fade

Description

This block models multipath fading channels for mobile radio
applications. The block accepts a complex baseband equivalent input and produces
complex baseband equivalent samples.

The method is based on William C. Jakes, "Microwave Mobile Communications," John
Wiley & Sons, 1974 in particular pp. 13-65.

Multipath is modeled using the technique presented by Nader Farahati, "A Software
Multipath Fading Channel Simulator", Technophone Limited, July 1989. Nader Farahati
is now with Scientific Generics, Cambridge U.K. Each multipath is associated with a
time delay. The time delays are incorporated by transforming the problem into the
frequency domain.

This block first reads all samples, u(t), at its input. It then multiplies the complex input
samples by the complex fading channel amplitude with doppler shift for path i, ri(t), and
transforms them into the frequency domain, Yi(f). The various delays are incorporated
by multiplying the frequency domain data, Yi(f), by exp{-2πj(fc+f)ti} where fc is the
carrier frequency, f is the frequency, and ti is the time delay of the ith multipath.

The various multipaths with independent fading channel amplitudes are added in the
frequency domain and transformed back into the time domain.

The block then outputs the complex data as two channels (in-phase and quad-phase) in
128 sample chunks. This helps in limiting the size of buffers.

Note that other doppler spectrums and Rician distributions will be
supported later. The block can easily be changed.

Programmer: Sasan Ardalan
Date: Dec. 27, 1990

Capsim Block Documentation 197

parameters
 Number of points (preferably a power of 2)
 int npts = 128;
 Doppler Spectrum, only Ez supported at this time.
 int type=0;
 Sampling Rate
 float fs=1.0;
 Carrier frequency
 float fc=1000e6;
 Vehicle Velocity, m/s
 float v= 0;
 Power
 float p= 1.0;
 Array of multipath delays microsec: number_of_paths t0 t1 ...
 array delays;
 Array of multipath powers: number_of_paths p0 p1 ...
 array powers;
 Number of Plane Waves arriving plane waves, N where N >=34
 int numberArrivals=40;

Buffers
Inputs:
Buffer 0: inPhase (float)
Buffer 1: quadPhase (float)

Outputs:
Buffer 0: inPhase (float)
Buffer 1: quadPhase (float)

Graphic

Mobile Fading
Channel

in phase

quadrature phase quadrature phase

in phase0

1

0

1

Capsim Block Documentation 198

Fixed Point/Floating Point
Models

Capsim Block Documentation 199

fti

Description

Convert floating point buffer to 32 bit integer buffer. Auto fan-out.

Programmer: Sasan Ardalan
Date: July 1990

parameters

 None

Buffers
Inputs:
Buffer 0 (float)

Outputs:
Auto fan-out (int)

Graphic

fti

Capsim Block Documentation 200

itf

Description

Convert 32 bit integer buffer to floating point buffer. Auto fan-out.

Programmer: Sasan Ardalan
Date: July 1990

parameters

 None

Buffers
Inputs:
Buffer 0 (int)

Outputs:
Auto fan-out (float)

Graphic

itf

Capsim Block Documentation 201

fxadd

Description

This block adds all of its double precision input samples. The input is in double precision
(two packaged 32 bit integers) normally coming from the fxgain.s block. The output is
rounded by the number of bits specified by the parameter roundoff_bits. Saturation can
be turned on or off. Auto fan-in and fan-out supported. The output is single precision
integers.

Although the inputs are double precision they represent numbers anywhere from 2 to 64
bits in wordlength. The output is a 32 bit integer, however, it represents a 1 to 32 bit
number.

The structure of the double precision cells in the input buffer is:

typedef struct {
 int lowWord;
 int highWord;
} doublePrecInt;

for auto fan-in we use indi(i,k) for "input double precision integer (buffer i, delay k)"

Programmer: Jeyhan Karaoguz
Date: October 29, 1990

parameters

 (1) Roundoff bits
 int roundoff_bits =8;
 (2) Word length
 int size =32;
 (3) Output size
 int output_size = 32 ;
 (4) Saturation mode: 1 = On , 0= Off
 int saturation_mode = 1 ;

Buffers
Inputs:
(doublePrecInt). Auto fan-in

Capsim Block Documentation 202

Outputs:
(doublePrecInt) Auto fan-out

Graphic

Σ

0
1

2

0
1

n

Capsim Block Documentation 203

fxgain

Description

This block multiplies the incoming data stream by the parameter "Gain factor" in fixed-
point arithmetic.The block is capable of doing extended precision arithmetic up to 64 bits
result which is to be rounded to at least 32 bits after the fxadd.s block. The output buffer
cells are doublePrecInt where two 32 bit integers are packaged into a cell. See fxadd.s.

Programmer: Jeyhan Karaoguz
Date: October 29, 1990

parameters

 (1) Gain factor (float)
 float factor =1.0;
 (2) Number of bits to represent fraction
 int qbits =8;
 (3) Word length
 int size = 32 ;

Buffers
Inputs:
Buffer 0: x (int).

Outputs:
(doublePrecInt) Auto fan-out

Graphic

α

Capsim Block Documentation 204

fxnode

Description

Exactly as node block but with integer buffers.

Programmer: Jeyhan Karaoguz
Date: September , 1990

parameters
 None

Buffers
Inputs:
Buffer 0: (int).

Outputs:
(int) Auto fan-out

Graphic

Capsim Block Documentation 205

fxdelay

Description

Exactly as delay block but with integer buffers.

Programmer: Jeyhan Karaoguz
Date: September , 1990

parameters
 (1) Number of samples to delay";
 int samples_delay = 1;

Buffers
Inputs:
Buffer 0: (int).delay_min = samples_delay; delay_max = samples_delay + 1;

Outputs:
(int) Auto fan-out

Graphic

z -N

Capsim Block Documentation 206

fxnl

Description

Fixed Point Normalized Lattice Filter
fxnl()
This block implements a fixed point normalized lattice filter.

All variables used are of type integer so that the algorithm can be directly implemented
on a Digital Signal Processor.

This block supports both floating point and integer buffers.

If floating point buffers are used, the input samples are quantized with the input
quantizer range and number of bits specified as parameters. The output is also converted
to floating point within the original quantizer range. e.g. +- 5 volts.

If integer buffers are used, no quantization is used and the
integer input samples are processed directly.

This block can be replace the floating point normalized lattice block nl.s to analyze the
effects of fixed point implementation with different word sizes.

Programmer: Sasan H Ardalan
Date: September 7, 1991

parameters
 (1) File with normalized lattice filter parameters
 file file_name = "tmp.lat";
 (2) Fixed point precision for coefficients, bits
 int regBits=16;
 (3) Input/output quantization bits
 int quantBits=16;
 (4) Input/output Range e.g. +- 5 volts
 int quantRange=10.0;
 (5) 0=Float Buffers,1=Integer Buffer
 int bufferType=0;

Buffers
Inputs:
Buffer 0: input samples (int or float see parameter 5);

Outputs:

Capsim Block Documentation 207

Buffer 0: output samples(int or float see parameter 5);

Capsim Block Documentation 208

pri

Description

Stores integer samples in a file as hex.

Programmer: Jeyhan Karaoguz
Date: September , 1990

parameters
 (1) File to store data;
 file filename;

Buffers
Inputs:
Buffer 0: input samples (int);

Outputs:
Buffer 0: output samples(int);

Graphic

pri

Capsim Block Documentation 209

Logic Models

Capsim Block Documentation 210

and

Description

Function performs logical "and" of all its input samples to yield an output sample; the
number of input buffers is arbitrary and determined at run time.The number of output
buffers is also arbitrary (auto-fanout).

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 (1) Length of data in bits
 int b_length =1;

Buffers
Inputs:
Input bits(float). Auto fan-in

Outputs:
Output bits (float) Auto fan-out

Graphic

Capsim Block Documentation 211

invert

Description

This block logically inverts incoming data stream.
Auto fanout is supported.

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 (1) Length of data in bits
 int b_length =1;

Buffers
Inputs:
Buffer 0: Input bits(float).

Outputs:
Output bits (float) Auto fan-out

Graphic

Capsim Block Documentation 212

nand

Description

Function performs logical "nand" of all its input samples to yield an output sample; the
number of input buffers is arbitrary and determined at run time.The number of output
buffers is also arbitrary (auto-fanout).

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 (1) Length of data in bits
 int b_length =1;

Buffers
Inputs:
Input bits(float). Auto fan-in

Outputs:
Output bits (float) Auto fan-out

Graphic

Capsim Block Documentation 213

nor

Description

Function performs logical "nor" of all its input samples to yield an output sample; the
number of input buffers is arbitrary and determined at run time.The number of output
buffers is also arbitrary (auto-fanout).

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 (1) Length of data in bits
 int b_length =1;

Buffers
Inputs:
Input bits(float). Auto fan-in

Outputs:
Output bits (float) Auto fan-out

Graphic

Capsim Block Documentation 214

or

Description

Function performs logical "or" of all its input samples to yield an output sample; the
number of input buffers is arbitrary and determined at run time.The number of output
buffers is also arbitrary (auto-fanout).

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 (1) Length of data in bits
 int b_length =1;

Buffers
Inputs:
Input bits(float). Auto fan-in

Outputs:
Output bits (float) Auto fan-out

Graphic

Capsim Block Documentation 215

xnor

Description

Function performs logical "xnor" of all its input samples to yield an output sample; the
number of input buffers is arbitrary and determined at run time.The number of output
buffers is also arbitrary (auto-fanout).

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 (1) Length of data in bits
 int b_length =1;

Buffers
Inputs:
Input bits(float). Auto fan-in

Outputs:
Output bits (float) Auto fan-out

Graphic

Capsim Block Documentation 216

xor

Description

Function performs logical "xor" of all its input samples to yield an output sample; the
number of input buffers is arbitrary and determined at run time.The number of output
buffers is also arbitrary (auto-fanout).

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 (1) Length of data in bits
 int b_length =1;

Buffers
Inputs:
Input bits(float). Auto fan-in

Outputs:
Output bits (float) Auto fan-out

Graphic

Capsim Block Documentation 217

jkff

Description

JK Flip Flop. Positive edge triggered.

Characteristic Table

Q J K Q(t+1)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 None

Buffers
Inputs:
Buffer 0: j (float). delay_max = 1
Buffer 1: k (float). delay_max = 1
Buffer 2: cp (float). delay_max = 1
Buffer 3: re (float). delay_max = 1

Outputs:
Buffer 0: q (float)
Buffer 1: qp (float)

Graphic

Capsim Block Documentation 218

Q

Q

J

K
Reset

Capsim Block Documentation 219

srff

Description

Set/Reset SR Flip Flop. Positive edge triggered.

Characteristic Table

Q S R Q(t+1)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 -
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 -

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 None

Buffers
Inputs:
Buffer 0: S delay_max=1;
Buffer 1: R delay_max=1;
Buffer 2: cp delay_max=1;

Outputs:
Buffer 0: Q (float)
Buffer 1: QP (float)

Graphic

Capsim Block Documentation 220

Q

Q

S

R

Capsim Block Documentation 221

srlatch

Description

Set/Reset SR latch.

Truth Table

S R Q Q'
1 0 1 0
0 0 1 0 (after S=1, R=0)
0 1 0 1
0 0 0 1 (after S=0,R=1)
1 1 0 0

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 None

Buffers
Inputs:
Buffer 0: S delay_max=1;
Buffer 1: R delay_max=1;

Outputs:
Buffer 0: Q (float)
Buffer 1: QP (float)

Graphic

Q

Q

S

R

Capsim Block Documentation 222

Capsim Block Documentation 223

tff

Description

Toggle T Flip Flop. Positive edge triggered.

Characteristic Table

Q T Q(t+1

)
0 0 0
0 1 1
1 0 1
1 1 0

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 None

Buffers
Inputs:
Buffer 0: T delay_max=1;
Buffer 1: cp delay_max=1;

Outputs:
Buffer 0: Q (float)
Buffer 1: QP (float)

Graphic

Q

Q

T

Capsim Block Documentation 224

Capsim Block Documentation 225

dff

Description

D Flip Flop. Positive edge triggered.

Characteristic Table

Q D Q(t+1

)
0 0 0
0 1 1
1 0 0
1 1 1

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters

 None

Buffers
Inputs:
Buffer 0: T delay_max=1;
Buffer 1: cp delay_max=1;

Outputs:
Buffer 0: Q (float)
Buffer 1: QP (float)

Graphic

Q

Q

D

Capsim Block Documentation 226

Capsim Block Documentation 227

divider

Description

Divides input asynchronously by specified parameter.

Programmer: Ray J. Kassel
Date: October 29, 1990

parameters
 Value to divide by.
 int divide_by = 2;

Buffers
Inputs:
Buffer 0: Data to be divided delay_max=1;

Outputs:
Buffer 0: Divided data (float)

Graphic

N

Capsim Block Documentation 228

Image Manipulation Blocks

Capsim Block Documentation 229

imgaddnoise

Description

Input an image and add the following noise to it:

Uniform noise distributed between a(param1) and b(param2)
Gaussian noise with mean(param1) and std(param2) specified.
Spike noise generated as follows:
 a Normal distribution is generated. If its level exceeds
 param1, then its value is assigned to x.
 Next x is multiplied by param2 to obtain the spike.
 The spike value is then added to the matrix.

To generate different outcomes change the expression

Programmer: Sasan Ardalan
Date: September 10, 1993

Parameters

 Noise Type:0=none,1=uniform,2=normal,3=spike
 int type=1;
 Expression for seed generation
 file expression="any_expression";
 param1: a(uniform), mean (normal) trigger(spike)
 float param1=0.0;
 param2: b(uniform), std (normal) multiplier(spike)
 float param2=1.0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 230

imgbreakup

Description

The sub images are sequentially output.

Programmer: Sasan Ardalan
Date: August 15, 1993

Parameters

 Sub image width
 int subWidth=8;
 Sub image height
 int subHeight=8;
 Levels (for inverse)
 int levels=256;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 231

imgbuild

Description

This block inputs a sequence of images and creates a larger image
with the inputted images forming subimages from left to right top
to bottom.

When the height (specified as a parameter) is exceeded the inputted
images wrap around.

After the sub images are all gathered, the image is output.

Programmer: Sasan Ardalan
Date: August 15, 1993

Parameters

 Image width
 int imageWidth=128;
 Image height
 int imageHeight=128;
 Levels (for inverse)
 int levels=256;

Buffers

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 232

imgcalc

Description

Perform a mathematical or logical operation on an image using another
image.
Buffers:
 Input:
 x
 y
 Output:
 z

The image on buffer x is replaced with the result of the calculation.
x=f(x,y)
x is output on buffer z.

Image y may be offset in width and height prior to the operation.

Supported Operations:
 0: Multiply
 1: Add
 2: Subtract
 3: Divide
 4: AND
 5: OR
 6: XOR
 7: Complement
 8: Copy

Programmer: Sasan Ardalan
Date: September 10, 1993

Parameters

 Operation:0=x,1=-,2:*,3:/,4:&,5:|,6:xor,7:cmpl,8:copy
 int operation=6;
 width offset
 int widthOffset=0;
 height offset

Capsim Block Documentation 233

 int heightOffset=0;

Buffers
Inputs:
Buffer 0: image_t x
Buffer 0: image_t y

Outputs:
Buffer 0: image_t z

Graphic

Capsim Block Documentation 234

imgcolorsep

Description

This block inputs an image and outputs multiple images representing
color components.

For RGB, three images are output for each image inputted.
The first image is the red color, the second, green and the fourth blue.

For YCbCr, the outputed images are the luminance (Y) and chrominance (Cb,Cr)
images.

The block obtains the RGB values from the current installed color map.

To view the images, connect this block to the imgdisp block.
Set the Animation parameter to 0 (FALSE)
After the simulation, uninstall the color map, next
load the 16 level gray color map.
Finally, select Update All Images from the Image pulldown menu.
This will display the image components in gray scale.

Programmer: Sasan Ardalan
Date: August 15, 1993

Parameters

 Color Space:0=RGB,1=YCbCr,2=YUB
 int colorSpace=0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 235

imgcxmag

Description

This block inputs a complex image height*(2*width) and creates a new
real image height*width of magnitudes

Programmer: Sasan Ardalan
Date: September 9, 1993

Parameters

None

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 236

imgcxtrl

Description

This block inputs a complex image height*(2*width) and creates a new
real image height*width of only the real part

Programmer: Sasan Ardalan
Date: September 9, 1993

Parameters

 1=free input image, 0= don't
 int freeImageFlag=0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 237

imgfft

Description

This block inputs an image and computes its forward or inverse FFT.
For a forward FFT a real matrix is expected and a complex image is
produced.
For an inverse FFT a complex image is expected (possible result of a
forward FFT).
Complex images store real and imaginary parts as even and odd sample
columns. Thus for complex images width =2*height.

Programmer: Sasan Ardalan
Date: September 10, 1993

Parameters

 Operation: 0=Forward FFT, 1= Inverse FFT
 int fftType=0;
 Center: 0=None , 1= Yes
 int centerFlag=0;
 1=free input image, 0= don't
 int freeImageFlag=0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 238

imgfilter

Description

Input an image and filter it.
The filter kernel is specified. It must be an ASCII file as follows:

Programmer: Sasan Ardalan
Date: September 10, 1993

Parameters

 Filter Kernel
 file filterKernel="filt.krn";
 1=free input image, 0= don't
 int freeImageFlag=0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 239

imgfilter

Description

Input an image and filter it.
The filter kernel is specified. It must be an ASCII file as follows:

Programmer: Sasan Ardalan
Date: September 10, 1993

Parameters

 Filter Kernel
 file filterKernel="filt.krn";
 1=free input image, 0= don't
 int freeImageFlag=0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 240

imggen

Description

Generate a rectangular image. The image contains a rectangle offset
in with and height with specified rectangle width and height.

The image may be complemented in the sense that the value will fill
all the image except the rectangle.

For now only one image is generated. However, this can be easily changed
so that a sequence is generated.

Programmer: Sasan Ardalan
Date: September 10, 1993

Parameters

 Pixel Value
 float pixel=1.0;
 Image Width
 int pwidth=128;
 Image Height
 int pheight=128;
 Rectangle Width
 int rectWidth=128;
 Rectangle Height
 int rectHeight=128;
 Rectangle Width Offset
 int widthOffset=0;
 Rectangle Height Offset
 int heightOffset=0;
 Complex Flag
 int complexFlag=0;
 Complement Flag
 int complementFlag=0;

Buffers

Outputs:
Buffer 0: image_t y

Capsim Block Documentation 241

Graphic

Capsim Block Documentation 242

imghisteq

Description

This block inputs an image and performes an histogram equalization on it.
The original image is overwritten.

Programmer: Sasan Ardalan
Date: September 10, 1993

Parameters

 Levels (Power of two)
 int levels=256;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 243

imginterp

Description

This block inputs an image and interpolates it.

NOTE: Input and output buffers are of image_t type.

Programmer: Sasan Ardalan
Date: May 12, 1993

Parameters

 width factor
 int widthFactor=1;
 heightFactor
 int heightFactor=1;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 244

imgmanip

Description

This block inputs an image and transposes or flips it.

For transposing, a new image is generated.
All other operations overwrite the input image

Programmer: Sasan Ardalan
Date: April 15, 1993

Parameters

Operation:0=none,1=transpose,2=flipVert,4=flipHorz,3=inverse
 int operation=0;
 Levels (for inverse)
 int levels=256;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 245

imgmux

Description

Multiplex N input image channels to one output channel.
The multiplexing order is from input channel 0 to N-1 for N input channels.

Auto-fanout is supported.
There are no parameters.

Programmer: L.J. Faber
Date: April 15, 1988
Extended to images by Sasan Ardalan, June 2, 1993

Parameters

None

Buffers
Inputs:
Auto fan-in: image_t

Outputs:
Auto fan-out: image_t

Graphic

Capsim Block Documentation 246

imgnonlinfilter

Description

Input an image and perform nonlinear filtering on it.

Programmer: L.J. Faber
Date: April 15, 1988
Extended to images by Sasan Ardalan, June 2, 1993

Parameters

 Nonliner Filter Type:2=min,3=median,4=max
 int type=3;
 Order
 int order=3;
 1=free input image, 0= don't
 int freeImageFlag=0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 247

imgnonlinfilter

Description

Input an image and perform nonlinear filtering on it.

Programmer: Sasan Ardalan
Date: April 15, 1993

Parameters

 Name of output file
 file file_name = "output.img";

Buffers
Inputs:
Buffer 0: image_t x

Graphic

Capsim Block Documentation 248

imgproc

Description

This block inputs an image and transposes or flips it.

For transposing, a new image is generated.
All other operations overwrite the input image

Programmer: Sasan Ardalan
Date: April 15, 1988

Parameters

 Operation: 0=Transpose, 1= flip
 int operation=0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 249

imgrdbin

Description

Description: Read a binary image.
 On each visit a row is read from file.
 An image sample is output.
 Auto fan-out.

Programmer: Sasan Ardalan
Date: November 4, 1990

Parameters

 Image width
 int pwidth=128;
 Image height
 int pheight=128;
 File that contains binary image
 file file_name = "test.img";
 Number of bytes to skip
 int skip=0;

Buffers

Autofan-out

Graphic

Capsim Block Documentation 250

imgrdfptiff

Description

Description: Read a floating point TIFF image.
 Auto fan-out.

Programmer: Sasan Ardalan
Date: April 15, 1993

Parameters

 File that contains floating point TIFF image
 file fileName = "image.tif";

Buffers

Auto fan-out image_t

Graphic

Capsim Block Documentation 251

imgrtcx

Description

This block inputs a real image widthxheight and creates a new
complex image (2*width)*height with the imaginary part set to zero

Programmer: Sasan Ardalan
Date: September 9, 1993

Parameters

1=free input image, 0= don't
 int freeImageFlag=0;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 252

imgserin

Description

This block inputs rows and creates an image and
outputs it to the image buffer

Programmer: Sasan Ardalan
Date: April 15, 1988

Parameters

 Image Width
 int pwidth=1;
 Image Height
 int pheight=1;

Buffers
Inputs:
Buffer 0: float x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 253

imgserout

Description

This block inputs an image and outputs it a row at a time.

Programmer: Sasan Ardalan
Date: April 15, 1988

Parameters

None

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: float y

Graphic

Capsim Block Documentation 254

imgshrink

Description

This block inputs an image and interpolates it.

NOTE: Input and output buffers are of image_t type.

Programmer: Sasan Ardalan
Date: May 12, 1993

Parameters

 width shrink factor
 int widthFactor=1;
 height shrink Factor
 int heightFactor=1;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 255

imgsubimg

Description

This block inputs an image and transposes or flips it.

Programmer: Sasan Ardalan
Date: May 12, 1988

Parameters

 Sub image offset width
 int widthOffset=0;
 Sub image offset height
 int heightOffset=0;
 Sub image width
 int subWidth=1;
 Sub image height
 int subHeight=1;

Buffers
Inputs:
Buffer 0: image_t x

Outputs:
Buffer 0: image_t y

Graphic

Capsim Block Documentation 256

imgwrfptiff

Description

Writes an input image to a TIFF file as floating point. Also store the current
colormap.

If multiple images are received, they overwrite the previous on.
This block can later be modified so that multiple images are stored in a singe
TIFF file (with multiple directories). Or stored in multiple TIFF files
with the file name changing in some manner.

Auto fan out is supported.

Programmer: Sasan Ardalan
Date: October 14, 1993

Parameters

 Name of output file
 file fileName = "output.tif";

Buffers
Inputs:
Buffer 0: image_t x

Graphic

Capsim Block Documentation 257

imgwrtiff

Description

Writes an input image to a TIFF file as 8 bit samples. Also store the current
colormap.

If multiple images are received, they overwrite the previous on.
This block can later be modified so that multiple images are stored in a singe
TIFF file (with multiple directories). Or stored in multiple TIFF files
with the file name changing in some manner.

Auto fan out is supported.

Programmer: Sasan Ardalan
Date: October 14, 1993

Parameters

 Name of output file
 file fileName = "output.tif";

Buffers
Inputs:
Buffer 0: image_t x

Graphic

Capsim Block Documentation 258

Various

Capsim Block Documentation 259

expr

Description

Function evaluates all its input samples through an expression
specified as a parameter to yield an output sample;
the number of input buffers is arbitrary and determined at run time.
The number of output buffers is also arbitrary (auto-fanout).

In the expression refer to the sample on input buffer 0 as in0, for
input buffer 1 as in1 and so on. For example:
 sin(5*PI*in0/100)*exp(-0.001*in1)
Note the PI is predefined.

Programmer: Sasan Ardalan
Date: October 14, 1993

Parameters

 Enter expression (buffers are in0,in1,...)
 file paramExpr="in0*1";

Buffers
Inputs:
Auto fan-in float

Outputs:
Auto fan-out

Graphic

Capsim Block Documentation 260

invcust

Description

This block generates inventory customers.

The customers each have an inter arrival time and a product demand.

The inter arrival time is packaged with the product demand into a complex
data structure and output.

The real part of the complex data structure is the inter arrival time.
The imaginary part is the product demand.

The first parameter, which defaults to NUMBER_SAMPLES,
tells how many total samples to send out.

Programmer: Sasan Ardalan
Date: October 14, 1993

Parameters

 total number of customers
 int num_of_samples = 128;
 Type:0=exp,1=gamma
 int type = 0;
 Inter Arrival Time
 float meanArrival = 1.0;
 Expression for random number generator
 file expression = "any expresssion";
 File with demand probabilities
 file demandProbDist = "demand_dist.dat";

 pace rate to determine how many samples to output
 float pace_rate = 1.0;
 number of samples on the first call if paced
 int samples_first_time = 128;

Buffers

Outputs:
Auto fan-out

Capsim Block Documentation 261

Graphic

Capsim Block Documentation 262

inventory

Description
This block models an inventory system.

The input buffer is the customer inter arrival times and
product demand.

The input are complex with the real part equal to the inter arrival time
and the imaginary part equal to the product demand.

The inventory does not need to output anything but we have chosen to output
the inventory level. Thus by connecting the output of
the inventory block to the plot block, you can observe the inventory level
over time.

Many other output combinations are possible but this block is used to serve
as an example.

The inventory block implements the C code in "Simulation Modeling and Analysis"
by Averill M. Law and W. David Kelton, Second Edition 1991.

We have included original comments.

The parameters are:

 (1) Initial inventory level
 (2) Number of months
 (3) Set up cost
 (4) Incremental cost
 (5) Holding cost
 (6) Shortage cost
 (7) Minimum lag
 (8) Maximum lag
 (9) Order threshold (s)
 (10) Inventory Level (S)
 (11) Expression for random number generator
 (12) Output Request:0=Inventory Level,1=Demand Size

Notes:
 (1) The simulation will end when there are no more customers.
 However, the simulation can end using parameter 2 as a condition.

Capsim Block Documentation 263

The input buffers are arbitrary so that in the future multiple customer
sources may be modeled with a single inventory.

The number of input buffers is arbitrary and determined at run time.
The number of output buffers is also arbitrary (auto-fanout).

Programmer: Sasan Ardalan
Date: November 6, 1993

Parameters

Initial inventory level
 int initialInventoryLevel = 60;

 number of months
 int numberMonths = 120;

 set up cost
 float setupCost = 32.0;

 incremental cost
 float incrementalCost = 3.0;

 holding cost
 float holdingCost = 1.0;

 shortage cost
 float shortageCost = 5.0;

 minimum lag
 float minLag = 0.5;

 maximum lag
 float maxLag = 1.0;

 Order threshold (s)
 float smalls = 20.0;

 Inventory Level (S)

Capsim Block Documentation 264

 float bigs = 60.0;

 Expression
 file expression = "any expresssion";

 Output Request:0=Inventory Level,1=Demand Size
 int outputRequest = 0;

Buffers

Inputs:
Auto fan-in

Outputs:
Auto fan-out

Graphic

Capsim Block Documentation 265

rangen

Description

This block generates random samples.

The first parameter, which defaults to NUMBER_SAMPLES, tells how many total
samples to send out.

Programmer: Sasan Ardalan
Date: October 14, 1993

Parameters

total number of samples to output
 int num_of_samples = 128;
 Type:0=normal,1=uniform,2=exp,3=gamma
 int type = 0;
 Parameter 1(mean,a,lambda)
 float p1 = 0.0;
 Parameter 2(std,b)
 float p2 = 0.0;
 Expression
 file expression = "any expresssion";
 pace rate to determine how many samples to output
 float pace_rate = 1.0;
 number of samples on the first call if paced
 int samples_first_time = 128;

Buffers

Outputs:
Auto fan-out

Graphic

